References
[1] Ganie, A. H. and Sheikh, N. A. (2013). On some new sequence space of non-absolute type and matrix transforma-tions, J. Egypt. Math. Soc., 21, 34-40.
[2] Neyaz, A. S. and Abdul, H. G. (2012). A new paranormed sequence space and some matrix transformations, Acta Math. Acad. Paedagog. Nyiregyhaziensis, 28, 47-58.
[3] Banach, S. (1932). Theỏries des operations linẻaries, Warszawa.
[4] Sheikh, N. A., Jalal, T., and Ganie, A. H. (2013). New type of sequence spaces of non-absolute type and some ma-trix transformations, Acta Math. Acad. Paedagog. Nyiregyhaziensis, 29, 51-66.
[5] Ganie, A. H. and Sheikh, N. A. (2015). Infinite matrices and almost convergence, Filomat, 29(6), 1183-1188.
[6] Ganie, A. H. and Antesar, A. (2020). Certain sequence spaces using ∆-operator, Adv. Stud. Contemp. Math. (Kyungshang), 30(1), 17-27.
[7] Lorentz, G. G. (1948). A contribution to the theory of divergent series, Acta Math., (80), 167-190.
[8] Abdul, H. G. (2020). Lacunary sequences with almost and statistical convergence, Annals Commu. Maths., 3(1), 46-53.
[9] Nanda, S. (1979). Matrix transformations and almost boundedness, Glasnik Mat., 14(34), 99-107.
[10] Abdul, H. G. (2020). Riesz spaces using modulus function, Int. jour. Math. Models & Methods in Appl. Sci., 14, 20-23.
[11] Ganie, A. H., Mobin, A., Sheikh, N. A., and Jalal, T. (2016). New type of Riesz sequence space of non-absolute type, J. Appl. Comput. Math., 5(1), 1-4.
[12] Lascarides, C. G., Maddox, I. J. (1970). Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc., (68), 99-104.
[13] Sheikh, N. A. and Ganie, A. H. (2013). On the space of λ-convergent sequence and almost convergence, Thai J. Math., 2(11), 393-398.
[14] Altay, B. and Başar, F. (2002). On the paranormed reisz sequence space of non-absolute type, Southeast Asian Bulletin of Math., (26), 701-715.
[15] Ganie, A. H., Lone, S. A., and Akhter, A. (2020). Generalised Ceşaro difference sequence space of non-absolute type, EKSAKTA, 1(2), 147-153.
[16] Jalal, T. and Ganie, A. H. (2009). Almost convergence and some matrix transformation, International Jour. Math. (Shekhar New Series), 1(1), 133-138.