References
[1] Egamberdieva, D., Stephan Wirth, Undine Behrendt, Parvaiz Ahmad, Gabriele Berg. (2017). Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Front Microbiol. 8: 199.
[2] Rios, J. L., Recio, M. C. (2005). Medicinal plants and antimicrobial activity. J Ethnopharmacol. 100(2005): 80-84.
[3] Schmidt, T. J., Khalid, S. A., Romanha, A. J., Alves, T. M., Biavatti, M. W., Brun, R., Costa, F. B. D., Castro, S. L. D., Ferreira, V. F., Lacerda, M. V. G. D., Lago, J. H. G., Leon, L. L., Lopes, N. P., Amorim, R. C. D. N., Niehues, M., Ogungbe, I. V., Poh-lit, A. M., Scotti, M. T., Setzer, W. N., Soeiro, M. D. N. C., Steindel, M., Tempone, A. G. (2012). The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases—part II. Curr Med Chem. 19: 2176-2228.
[4] Si-Yuan Pan, Shu-Feng Zhou, Si-Hua Gao, Zhi-Ling Yu, Shuo-Feng Zhang, Min-Ke Tang, Jian-Ning Sun, Dik-Lung Ma, Yi-Fan Han, Wang-Fun Fong, Kam-Ming Ko. (2013). New Perspectives on How to Discover Drugs from Herbal Medicines: CAM’s Outstanding Contribution to Modern Therapeutics. J Evid Based Complementary Altern Med. http://dx.doi.org/10.1155/2013/627375.
[5] Newman. (2008). Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem. 51: 2589-2599.
[6] Chen, S. L., Hua Yu, Hong‑Mei Luo, Qiong Wu, Chun‑Fang Li, André Steinmetz. (2016). Conservation andsustainable use of medicinal plants: problems, progress and prospects. 11: 37. DOI 10.1186/s13020-016-0108-7.
[7] Savoia. (2012). Plant derived antimicrobial compounds: Alternatives to antibiotics. Future Microbiol. 7: 979-990.
[8] Krishnananda, I. P., Amit, G. D., Dipika, A. P., Mahendra, S. D., Mangesh, P. M., Vaibhav, C. K. (2017). Phytochemicals: Extraction methods, identification and detection of bioactive compounds from plant extracts. J. Pharmacogn Phytochem. 6(1): 32-36.
[9] Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml,V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., Stuppner, H. (2016). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv. 33(8): 1582-1614. doi: 10.1016/j.biotechadv.2015.08.001.PMID: 26281720; PMCID: PMC4748402.
[10] WHO traditional medicine strategy, 2002-2005. www.who.int/medicines/library/trm/trm_stat_eng.pdf.
[11] Hossain, K., Hassan, M., Parvin, N., Hasan, M., Islam, S., Haque, A. (2012). Antimicrobial, cytotoxic and thrombolytic activity of Cassia senna Leaves (Family: Fabaceae). J. Appl. Pharm. Sci. 2(6): 186-190. https://www.japsonline.com/admin/ php/uploads/527_pdf.pdf.
[12] Gorniak, I., Bartoszewski, R., Kroliczewski, J.,2019. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev. 18:241–272..https://doi.org/10.1007/s11101-018-9591-z.
[13] Dhama, K., Chakraborty,S., Tiwari,R., Verma,A.K., Saminathan,M.,Amarpal., Malik,Y.S.,Nikousefat, Z., Javdani, M., Khan, R.U., 2014. A concept paper on novel technologies boosting production and safeguarding health of humans and animals. Res. Opin. Anim. Vet. Sci., 4(7): 353-370.EISSN: 2223-0343.
[14] Mahima, Rahal, A., Deb, R., latheef, S. K., Samad, H. A. (2012). Immunomodulatory and therapeutic potentials of herbal, tra-ditional/indigenious and ethnoveterinary medicines. Pak. J. Biol. Sci. 15: 754-774.
[15] Othman, L., Sleiman, A., Abdel-Massih, R. M. (2019). Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front. Microbiol.10.911.doi: 10.3389/fmicb.2019.00911.
[16] Borges. (2016). New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections In-cluding Biofilms. Molecules. 21(7). pii: E877. doi: 10.3390/molecules 21070877. PMID: 27399652. PMCID: PMC6274140.
[17] Tegos, G., Stermitz, F. R., Lomovskaya, O., Lewis, K. (2002). Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob Agents Chemother. 46, 3133-3141.
[18] Marchese, A., Shito, G. (2001). Resistance patterns of lower respiratory tract pathogens in Europe. Int. J. Antimicrob. Agents. 16: 25-29.
[19] Jinukuti, M. G., Giri, A. (2013). Antimicrobial activity of phytopharmaceuticals for prevention and cure of diseases. Ann Phy-tomed. 2(2): 28-46. ISSN 2278-9839.https://pdfs.semanticscholar.org/1cb6/f7aa8736d56af0a20ee705ed8f8b703c76e5.pdf.
[20] Pavle, M. Z., Vesna,V., Sasa, D., Zoran, Z., Marija, R., Aleksandra, C., Jaroslava, S. G., Milan, M., Jelena, V. (2018). Biological activity and chemical profile of Lavatera thuringiaca L. extracts obtained by different extraction approaches. Phytomedicine. 38(2018): 118-124.
[21] Zengin, G., Zaahira, A. E., Adriano, M., Mustafa, Abdullah, Y., Mohamad Fawzi, M. (2018). In vitro and in silico perspectives on biological and phytochemical profile of three halophyte species—A source of innovative phytopharmaceuticals from na-ture.Phytomedicine. 38(2018): 35-44.
[22] Zengin, G., Uysal, A., Aktumsek, A., Mocan, A., Mollica, A., Locatelli, M., Custodio, L., Neng, N. R., Nogueira, J. M. F., Aumeeruddy-Elalfi, Z., Mahomoodally, M. F. (2017). Euphorbia denticulata Lam.: A promising source of phyto-pharmaceuticals for the development of novel functional formulations. Biomed.Pharmacother. 87: 27-36.
[23] Shuma, F., Neelaiah Babu, G., Aman, D., Yiheyis, B. (2018). Phytochemical Investigation and Antimicrobial Study of leaf Extract of Plantago lanceolata. Nat. Prod. Chem. Res. 6(2): 1-8.
[24] Roy, S., Kiranmayee, Rao, Bhuvaneswari, Ch., Giri, A., Lakshmi Narasu, M. (2010). Phytochemical analysis of Andrographis paniculata extract and its antimicrobial activity. World J Microbiol Biotechnol. 26: 85-91.
[25] Chodisetti, B., Kiranmayee Rao, Archana Giri. (2013). Phytochemical analysis of Gymnema sylvestre and evaluation of its antimicrobial activity. Nat. Prod. Res. 27(6): 583-587.
[26] Feher, M., Schmidt, J. M. (2003). Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci. 43: 218-227.
[27] Helander, I. M., Alakomi, H. L., Latva-kala, K., Mattila-Sandholm, T., Pol, I., (1998). Characterization of the Actionof selected essential oil components on gram-negative bacteria. J. Agric. Food Chem. 46(9): 3590-3595. https://pubs.acs.org/doi/abs/10. 1021/jf980154m.https://doi.org/10.1021/jf980154m.
[28] Juven, B. J., Kanner, J., Schved, F., Weisslowicz, H. (1994). Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J Appl Bacteriol. 76: 626-631.
[29] Bendich. (1989). Carotenoids and the immune response. J. Nutr. 119: 112-115.
[30] Henson, D. E., Block, G., Levin, M. (1991). Ascorbic acid biological function in relation to cancer. J Natl Cancer Inst. 83: 547-550.
[31] Ringer, T. V., Deloof, M. J., Winterrowd, G. E., Francom, S. F., Gaylor, S. K. (1991). Beta-carotenes effects on serum lipo-proteins and immunologic indices in humans. Am. J. Clin. Nutr. 53: 688-694.
[32] Govindarajan, R., Vijayakumar, M., Pushpangadan, P. (2005). Antioxidant approach to disease management and the role of ‘Rasayana’ herbs of Ayurveda. J Ethnopharmacol. 99: 165-178.
[33] Tiwari, R., Chakraborty, S., Saminathan, M., Dhama, K., Singh, S. V. (2014). Ashwagandha (Withania somnifera): Role in safeguarding health, immunomodulatory effects, combating infections and therapeutic applications: A review. J. Biol. Sci. 14: 77-94.
[34] Nahrstedt, A., Hungeling, M., Petereit. (2006). Flavonoids from Acalypha indica.Fitoterapia. 77: 484-486.
[35] Rahal, A., Kumar, A., Singh, V., Yadav, B., Tiwari, R., Chakraborty, S., Dhama, K. (2014). Oxidative stress, prooxidants and antioxidants: The interplay. Biomed Res. Int. 10.1155/2014/761264.
[36] Ruberto, G., Baratta, M. T., Deans, S. G., Dorman, H. J. (2000). Antioxidant and antimicrobial activity of Foeniculum vulgare and Crithmum maritimum essential oils. Planta Med. 66: 687-693.
[37] Joe, B., Vijaykumar, M., Lokesh, B. R. (2004). Biological properties of curcumin—cellular and molecular mechanisms of ac-tion.Crit Rev Food Sci Nutr. 44: 97-111.
[38] Lee, J. H., Shim, J. S., Lee, J. S,, Kim, M. K., Chung, M. S., Kim, K. H. (2006). Pectin-like acidic polysaccharide from Panax ginseng with selective anti adhesive activity against pathogenic bacteria.Carbohydr. Res. 341: 1154-1163.
[39] Choi. (2008). Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin. 29: 1109-1118.
[40] Akram, M., Shahab-Uddin., Ahmed, A., Usmanghani, K., Hannan, A., Mohiuddin, E., Asif, M., 2010. Curcuma longa and curcumin: A review article. Rom. J. Biol. Plant Biol. 55(2): 65-70. Bucharest. https://www.researchgate. net/publication/284415430.
[41] Kang, S., Min, H. (2012). Ginseng, the immunity boost: The effects of Panax ginseng on immune system. J Ginseng Res. 36: 354-368.
[42] Yoo, D. G., Kim. M. C., Park, M. K., Park, K. M., Quan, F. S. (2012). Protective effect of ginseng polysaccharides on influenza viral infection. PloS One. 7(3): e33678. https://doi.org/10.1371/journal.pone.0033678.
[43] Diao, W., Hu, Q., Zhang, H., Xu, J. (2014). Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food control. 35: 109-116.https://doi.org/10.1016/j.foodcont.2013.06.056.
[44] Walsh. (2013). Investigating antibiotic resistance in non-clinical environments. Front Microbiol. 4: 9.
[45] Dantas, G., Sommer, M. O. A., Oluwasegun, R. D., Church, G. M. (2008). Bacteria subsisting on antibiotics. Science. 320(5872): 100-103.
[46] Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 13: 42-51.
[47] Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., Piddock, L. J. V. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 387: 176-187.
[48] Khameneh, B., Iranshahy, M., Soheili, V., Bazzaz, B. S. F. (2019). Review on plant antimicrobials: a mechanistic view point. Antimicrobial Resistance and Infection Control.8: 118.https://doi.org/10.1186/s13756-019-0559-6.
[49] Rollins, D. M., Joseph, S. W. (2000). Pathogenic Microbiology, University of Maryland, Basic Mechanisms of Antibiotic Action and Resistance.
[50] Dehghan, H., Sarrafi, Y., Salehi, P. (2016). Antioxidant and antidiabetic activities of 11 herbal plants From Hyrcania region.J Food Drug Anal. 24(1): 179-188. doi: 10.1016/j.jfda.2015.06.010. PMID: 28911402. DOI: 10.1016/j.jfda.2015.06.010.
[51] Akram, M., Hamid, A., Khalil, A., Ghaffar, A., Tayyaba, N., Saeed, A., Ali, M., Naveed, A. (2014). Review on medicinal uses, pharmacological, phytochemistry and immunomodulatory activity of plants. Int J Immunopathol Pharmacol., 27: 313-319.
[52] Silva Da, J. A. T., Yonekura, L., Kaganda, J., Mookdasanit, J., Nhut, D. T., Afach, G. (2005). Important secondarymetabolites and essential oils of species within the Anthemideae (Asteraceae). J Herbs Spices Med Plants.11: 1-46.
[53] French. (2005). Clinical impact and relevance of antibiotic resistance.Adv Drug Deliv Rev. 57(10): 1514-27. https://doi.org/10.1016/j.addr.2005.04.005.PMID:15978698.DOI:10.1016/j.addr.2005.04.005.
[54] Basri, D. F., Fan, S. H. (2005). The potential of aqueous and acetone extracts of galls of Querus infectoria as antibacterial agents. Indian J. Pharmacol. 37(1): 26-29. XXXVIII Annual Conference of the XXXVIII Annual Conference of the Indian Pharmacological Society, December 28-30, 2005, Madras Medical College, Chennai (Preconference Workshop on 27-12-2005) orkshop on 27-12-2005).
[55] Nikaido. (2003). Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiol. Mol. Biol. Rev. 67(4): 593-656.
[56] Saranraj, P., Sivasakthivelan, P. (2012). Screening of antibacterial activity of the medicinal plant Phyllanthus amarus against urinary tract infection causing bacterial pathogens. Appl. J. Hygiene. 1(3): 19-24.
[57] Yap, P. S.X., Yiap, B. C., Ping, H. C., Lim, S. H.E. (2014). Essential oils, a new horizon in combating bacterial antibiotic re-sistance. Open Microbiol J. 8: 6-14.
[58] Kalan, L., Wright, G. D. (2011). Antibiotic adjuvants: Multicomponent anti-infective strategies. Expert Rev Mol Med. 13: e5.
[59] Natarajan, D., Srinivasan, R., Shivakumar, M. S. (2014). Phyllanthus wightianusMull. Arg.: A Potential Source for Natural Antimicrobial Agents. Biomed Res Int. 2014: 1-9.
[60] Rao, K., Bhuvaneswari, Ch., Lakshmi, M. N., Giri, A. (2009). Antibacterial Activity of Alpinia galangal (L) Willd Crude Extracts. Appl.Biochem.Biotechnol. 162: 871-884.
[61] Rao, P. M. J., Giri, A. (2010). Antimicrobial activity of the extracts of Salacia oblonga wall. Rec. Res. Sci. Tech. 2(10): 01-04.
[62] Lyumugabe, F., Jeanne, P. U., Claude, B., Emmanuel, B. S. (2017). Antimicrobial Activity and Phytochemicals Analysis of Vernonia aemulans, Vernonia amygdalina, Lantana camara and Markhamia lutea Leaves as Natural Beer Preservatives. Am. J. Food Technol. 12(1): 35-42.
[63] Kavit, M., Patel, B. N., Jain, B. K. (2013). Phytochemical analysis of leaf extracts of Phyllanthus fraternus. Res J Recent Sci. 2(ISC-2012): 12-15. https://www.researchgate.net/publication/321005031_Phytochemical_analysis_of_leaf_extract_of_ Phyl-lanthus_fraternus.
[64] Jakobsen, T. H., Maria, V. G., Richard, K. P., Meenakshi, S. S., Louise, D. C., Morten, A. M. E. S., Thomas, B. R., Karlheinz, F., Friedrich, U., Peter, O. J., Claus, M., Kristian, F. N., Leo Eberl, Thomas, O. L., David, T., Niels, H., Thomas, B., Michael, G. (2012). Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob. Agents Chemother. 56: 2314-2325.
[65] Borges, A., Serra, S., Cristina Abreu, A., Saavedra, M. J., Salgado, A., Simoes, M. (2014). Evaluation of the effects of selected phytochemicals on quorum sensing inhibition and in vitro cytotoxicity. Biofouling. 30, 183-195.
[66] Mozirandi, W., Tagwireyi, D., Mukanganyama, S. (2019). Evaluation of antimicrobial activity of chondrillasterol isolated from Vernonia adoensis (Asteraceae). BMC Complementary and Alternative Medicine. 19: 249.
[67] Mladenka, P., Macakova, K., Filipsky, T., Zatloukalova, L., Jahodar, L., Bovicelli, P., Silvestri, I.P., Hrdina, R., Saso, L. (2011). In vitro analysis of iron chelating activity of flavonoids. J. Inorg. Biochem. 105: 693-701.
[68] Hatcher, H. C., Singh, R. N., Torti, F. M., Torti, S. V. (2009). Synthetic and natural iron chelators: Therapeutic potential and clinical use. Future Med Chem. 1: 1643-1670.
[69] Patel. (2005). Biofilms and antimicrobial resistance.Clin. Orthop. Relat. Res. 437: 41-47.
[70] Kris-Etherton, P. M., Hecker, K. D., Bonanome, A., Coval, S. M., Binkoski, A. E., Hilpert, K. F., Griel, A. E., Etherton, T. D., (2002). Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 113: 715-885.
[71] Manson. (2003). Cancer prevention—the potential for diet to modulate molecular signalling. Trends Mol Med. 9: 11-18.
[72] Surh. (2003). Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer. 3(10): 768-780.
[73] Puupponen-Pimia, R., Nohynek, L., Alakomi, H., Oksman-Caldentey, K. (2008). The action of berry phenolics against human intestinal pathogens. Biofactors. 23(4): 243-251.
[74] Andreadi, C. K., Howells, L. M., Atherfold, P. A., Manson, M. M. (2006). Involvement of Nrf2, p38, B-Raf, and nuclear fac-tor-kappa B, but not phosphatidylinositol 3-kinase, in induction of hemeoxygenase-1 by dietary polyphenols. MOL PHARMACOL. 69: 1033-1040.
[75] Sillankorv, S., Oliveira, R., Vieira, M. J., Sutherland, I., Azeredo, J. (2004). Bacteriophage phi S1 infection of Pseudomonas fluorescens planktonic cells versus biofilms. J Biofouling. 20(3): 133-138.
[76] Upadhyay, A., Upadhyaya, I., Kollanoor-Johny, A., Venkitanarayanan, K. (2014). Combating pathogenic microorganisms using plant-derived antimicrobials: a Mini review of the mechanistic basis. Biomed Res Int. 2014; 2: 761-41.
[77] Hawser, S. P., Douglas, L. J. (1994). Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun. 62: 915-21.
[78] Famuyide, I. M., Aro, A. O., Fasina, F. O., Eloff, J. N., McGaw, L. J. (2019). Antibacterial activity and mode of action of ace-tone crude leaf extracts of underinvestigated Syzygium and Eugenia (Myrtaceae) species on multidrug resistant porcine diarr-hoeagenic Escherichia coli. BMC Vet Res. 15(1): 162. doi: 10.1186/s12917-019-1914-9. PMID: 31118023. PMCID:PMC6532232.
[79] Rafsanjany, N., Lechtenberg, M., Petereit, F., Hensel, A. (2013). Antiadhesion as a functional concept for protection against uropathogenic Escherichia coli: in vitro studies with traditionally used plants with antiadhesive activity against uropathognic Escherichia coli. J Ethnopharmacol. 145(2): 591-7.
[80] Trease, G., Evans, W. (1972). Pharmacognosy, Aberdeen, Great Britain: Univ. Press.
[81] Sabbineni. (2016). Phenol—An effective antibacterial agent. J. Med. org. Chem. 3(2): 182-191.
[82] Zhang, Y., Lewis, K. (1997). Fabatins: new antimicrobial plant peptides. FEMS Microbiol Lett. 149: 59-64.
[83] Suarez, M., Haenni, M., Canarelli, S., Fisch, F., Chodanowski, P., Servis, C., Michielin, O., Freitag, R., Moreillon, P., Mermod, N. (2005). Structure-Function Characterization and Optimization of a Plant-Derived Antibacterial Peptide. Antimicrob Agents Chemother. 49(9): 3847-3857.
[84] Abukakar, M. G., Ukwuani, A. N., Seshu, R. A. (2008). Phytochemical screening and antibacterial activity of Tamarindusindica pulp extract. Asian j. Biochem. 3: 134-138. DOI: 10.3923/ajb.2008.134.138. URL: https://scialert.net/abstract/? doi=ajb.2008.134.138.
[85] Agbafor, K. N., Akubugwo, E. I., Ogbashi, M. E., Ajah, P. M., Ukwandu, C. C. (2011). Chemical and antimicrobial properties of leaf extracts of Zapotecaportoricensis. Res. J. med. Plant. 5: 605-612. DOI: 10.3923/rjmp.2011.605.612. URL: https://scialert.net/abstract/?doi=rjmp.2011.605.612.
[86] Compean, K. L., Ynalvez, R. A. (2014). Antimicrobial activity of plant secondary metabolites: A Review. Res. J. med. Plant. 8(5): 204-213. DOI:10.3923/rjmp.2014.204.213. URL:https://scialert.net/abstract/?doi=rjmp.2014.204.213.
[87] Wink., Roberts. (1998). Alkaloids: Biochemistry, Ecology, and Medicinal Applications, chapter 12, Modes of action of alkaloids, Plenum Press, NewYork.
[88] Cushnie, T. P. T., Cushnie, B., Lamb, A. J. (2014). Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents. 44: 377-86.
[89] Mariita, R. M., Ogol, C. K. P. O., Oguge, N. O., Okemo, P. O. (2011). Methanol extract of three medicinal plants from samburu in northern Kenya show significant antimycobacterial, antibacterial and antifungal properties. Res. J. med. Plant. 5: 54: 64.
[90] Sravanthi, P. S. S., Padmavathi, T. V. S., Giri, A. (2015). Anti-microbial activity of Phyllanthus amarus plant extracts using polar and non-polar solvents against gram positive and gram negative bacteria. Int J Curr Res. 7(12): 24687-24692.
[91] Sibi, G. P. Chatly., Adhikari, S., Ravikumar, K. R. (2012). Phytoconstituents and their influence on antimicrobial properties of Morinda citrifolia L. Res. J. med. Plant. 6: 441: 448.
[92] Sravanthi, P. S. S., Padmavathi, T. V. S., Giri, A. (2016). Metabolic fingerprinting of root, stem and leaf extracts of Phyllanthus amarus. J. Phytol. 8: 17-21.
[93] Thormar. (2011). Lipids and Essential Oils as Antimicrobial Agents; John Wiley & Sons; Chichester. ISBN: 978-0-470-74178-8.
[94] Hamid, A. A., Fakai, I. M., Sani, I., Argungu, A. U., Bello, F. (2014). Preliminary phytochemical and antibacterial activity of ethanolic and aqueous stem bark extracts of Psidium guajava. Am. J. Drug Discov. Dev. 4: 85-89. https://scialert.net/fulltextmobile/?doi=ajdd.2014.85.89. DOI: 10.3923/ajdd.2014.85.89. URL: https://scialert.net/abstract/? doi=ajdd.2014.85.89.
[95] Prasad, M. A., Zolnik, C. P., Molina, J. (2019). Leveraging phytochemicals: the plant Phylogeny predicts sources of novel An-tibacterial compounds.Future Sci. OA 5(7), FSO407.
[96] Rao, A., Zhang, Y., Muend, S., Rao, R. (2010). Mechanism of antifungal activity of terpenoid phenols resembles calcium stress andinhibition of the TOR pathway. Antimicrob. Agents Chemother. 54:5062-5069.
[97] Arfa, B. A., Combes, S., Preziosi-Belloy, L., Gontard, N., Chalier, P. (2006). Antimicrobial activity of carvacrol related to its chemicalstructure. Lett. Appl. Microbiol. 43: 149-154.
[98] Pereira de Oliveira, F., Mendes, J. M., de Oliveira Lima, E. (2013). Investigation on mechanism of antifungal activity of eugenol against Trichophyton rubrum. Med. Mycol. 51: 507-513.
[99] Darvishi, E., Omidi, M., Bushehri, A. A., Golshani, A., Smith, M. L. (2013). The antifungal eugenol perturbs dual aromatic and branched-chainamino acid permeases in the cytoplasmic membrane of yeast. PLoS One. 8(10): e76028. doi: 10.1371/journal.pone.0076028.
[100] Khan, M. S., Ahmad, I. (2012). Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J. Antimicrob. Chemother. 67: 618-621.
[101] Papageorgious, V. P., Assimopoulou, A. N., Ballis, A. C. (2008). Alkannins and Shikonins: A new class of wound healing agents. Curr Med Chem. 15: 3248-3267.
[102] Oboh. (2010). Antioxidant and antimicrobial properties of ethanolic extract of Ocimum gratissimum leaves. J Pharmacol Toxicol Methods. 5: 396-402.
[103] Meena, S. K., Premkumar, J., Chu Sing Lim., Thean Hock Tang., Kishore, R. S. (2010). Activity and interactions of antibiotic and phytochemical combinations against P. aeruginosainvitro. Int J Biol Sci. 6(6): 556-568.
[104] Paiva, P. M. G., Gomes, F. S., Napoleao, T. H., Sa, R. A., Correia, M. T. S., Coelho, L. C. B. B. (2010). Antimicrobial activityof secondary metabolites and lectins from plants, Current Research, Technology and Education topics in Applied Microbiology and Microbial Biotechnology. A.Mendez-vilas (Ed.), pp. 396-406.
[105] Sharon, N., Lis, H. (2001). The structural basis for carbohydrate recognition by lectins. Springer 2: 1-16.
[106] Hamed, El-SE., Ibrahim, El-AMM., Mounir, S. M. (2017). Antimicrobial Activities of Lectins Extracted from Some Cultivars of Phaseolus vulgaris seeds. J Microb Biochem Technol. 9(3): 109-116. doi: 10.4172/1948-5948.1000352. https://www.longdom.org/open-access/Antimicrobial-Activities-of-Lectins-Extracted-from-Some-Cultivars-of-Phaseolus-vulgaris-Seeds.pdf.
[107] Ratanapo, S., Ngamjunyaporn, W., Chulavatnatol, M. (2001). Interaction of a mulberry leaf lectin with a phytopathogenic bac-terium, P. syringae pv mori. Plant Sci. 160(4): 739-744.
[108] Qadir, S., Wani, I. H., Rafiq, S., Ganie, S. A., Masood, A., Hamid, R. (2013). Evaluation of antimicrobial activity of a lectin isolated and purified from Indigofera heterantha. Adv Biosci Biotech. 4: 999-1006.
[109] Pompeu, D. G., Mattioli, M. A., Ribiro, A., Goncalves, D. B., Maglhaes, D., Marangoni, S., Silva, J. A., Granjeiro, P. A. (2015). Purification, partial characterization and antimicrobial activity of lectin from Chenopodium quinoa seeds. Food Sci Technol. Campinas, 35(4): 696-703, Out.-Dez. 2015,http://dx.doi.org/10.1590/1678-457X.6823.
[110] Berger, F. M., Hubbard, C. V., Ludwig, B. J. (1953). Antimicrobial action of glycerol ethers and related compounds. Journal of Appl Microbiol. 1(3): 146-149. PMCID: PMC1056886. PMID: 13041188.
[111] Baluja, S., Chanda, S., Nandha, K. (2015). Antimicrobial activity of some pyrimidine derivatives in DMF and DMSO. Interna-tional Letters of Chemistry, Physics and Astronomy. 56: 131-141. https:// doi:10.18052/www.scipress.com/ILCPA.56.131. ISSN: 2299-3843. SciPress Ltd, Switzerland. Online: 2015-07-21.
[112] Porosa, L., Amanda, M., Gideon, W., Daniel, F. (2013). UV cured benzophenone terminated quaternary ammonium antimicro-bials for surfaces, Nano safe coatings incorporated (A Florida corporation). Publication number: WO2014089680 A1, Applica-tion number: PCT/CA2013/001026.
[113] Chang-Liang He, Ben-Dong Fu, Hai-qing Shen, Xiao-lin Jiang, Xu-Bin Wei. (2011). Fumaric acid, an antibacterial component of Aloe vera L. Afr. J. Biotechnol. 10(15): 2973-2977. Available online at http://www.academicjournals.org/AJB. DOI: 10.5897/AJB10.1497 ISSN 1684–5315 © 2011 Academic Journals.
[114] Florestano, H. J., Bahler, M. E. (2006). Antibacterial activity of a series of diphenylmethanes. J Am Pharm Assoc. 42(9): 576-578. https://www.ncbi.nlm.nih.gov/pubmed/13084475#. PMID:13084475.DOI:10.1002/jps.3030420916.
[115] Abdullah, A. S. H., Mirghani, M. E. S., Jamal, P. (2011). Antibacterial activity of Malaysian mango kernel. Afr. J. Biotechnol. 10(81): 18739-18748. Available online at http://www.academicjournals.org/AJB. DOI: 10.5897/AJB11.2746 ISSN 1684–5315 ©2011 Academic Journals.
[116] Barbieri, R., Coppo, E., Marcheseb, A., Daglia, M., Sobarzo-Sánchez, E., Nabavi, S. F., Nabavi, S. M. (2017). Phytochemicals for human disease: An update on plant-derivedcompounds antibacterial activity. Microbiological Research. 196(2017): 44-68.
[117] Lewis. (2013). Platforms for antibiotic discovery. Nat Rev Drug Discov. 12(5): 371-87.
[118] Lewis, K., Ausubel, F. M. (2006). Prospects for plant-derived antibacterials.Nat Biotechnol. di 24(12): 1504-7.
[119] Sharma, M., Manoharlal, R., Puri, N., Prasad, R. (2010). Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 inCandida albicans. Biosci Rep. 30: 391-404.
[120] Huyghebaert, G., Ducatelle, R., Van Immerseel, F. (2011). An update on alternatives to antimicrobial growth promoters for broilers. VET J. 187(2): 182-188.
[121] Dixon. (2001). Natural products and plant disease resistance. Nature. 411(6839): 843-7.
[122] Prakash. (2017). Applicability, Feasibility and efficacy of phytotherapy in aquatic animal health management. Am. J Plant Sci. 8: 257-287.
[123] Radulovic, N. S., Blagojevic, P. D., Stojanovic-Radic, Z. Z., Stojanovic, N. M. (2013). Antimicrobial plant metabolites: structural diversity and mechanism of action. Curr. Med. Chem. 20(7): 932-52.
[124] Mendoza, L., Wilkens, M., Urzua, A. (1997). Antimicrobial study of the resinous exudates and of diterpenoids and flavonoids isolated from some Chilean Pseudognaphalium (Asteraceae). J Ethnopharmacol. 58(2): 85-88.
[125] Griffin, S. G., Wyllie, S. G., Markham, J. L., Leach, D. N. (1999). The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Frag J. 14(5): 322-332. https://doi.org/10.1002/(SICI)1099- 1026(199909/10)14:5%3C322::AID-FFJ837%3E3.0.CO;2-4.
[126] Cox, S. D., Mann, C. M., Markham, J. L., Bell, H. C., Gustafson, J. E., Warmington, J. R., Wyllie, S. G. (2000). The mode of antimicrobial action of the essential oil of Melaleucaalternifolia (tea tree oil). J Appl Microbiol. 88(1):170-175.
[127] Carson, C. F., Mee, B. J., Riley, T. V. (2002). Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother. 46(6): 1914-1920. https://www.ncbi.nlm.nih.gov/pubmed/12019108#. PMID: 12019108. PMCID: PMC127210. DOI:10.1128/aac.46.6.1914-1920.2002.
[128] Brehm-Stecher, B. F., Johnson, E. A. (2003). Sensitization of Staphylococcus aureus and Escherichia coli to Antibiotics by the Sesquiterpenoids Nerolidol, Farnesol, Bisabolol, and Apritone.Antimicrob. Agents Chemother. 47(10): 3357-3360.
[129] Trombetta, D., Castelli, F., Sarpietro, M. G., Venuti, V., Cristiani, M., Daniele, C., Saija, A., Mazzanti, G., Bisignano, G. (2005). Mechanisms of Antibacterial Action of Three Monoterpenes. Antimicrob. Agents Chemother. 49(6): 2474-2478.
[130] Enwa, F. O., Omojate, C. G., Adonu, C. (2013). A Review on the phytochemical profile and the antibacterial susceptibility pattern of some clinical isolates to the ethanolic leaves extract of Moringa oleifera lam (moringaceae). Int. J. Adv. Res. 1 (5): 226-238. ISSN- 2320-5407. http://www.journalijar.com/uploads/2013-07-31_195938_409.pdf.
[131] Lee, W., Lee, D. G. (2014). An antifungal mechanism of curcumin lies in membrane-targeted action within Candida albicans. IUBMB Life. 66: 780-785.
[132] Sundram, V., Chauhan, S. C., Ebeling, M., Jaggi, M. (2012). Curcumin attenuates-catenin signaling in prostate cancer cells through activation of protein kinase D1. PLos One. 7: e35368.
[133] Lee, J., Lee, D. G. (2015). Novel antifungal mechanisms of resveratrol: apoptosis inducer in Candida alibicans. Curr Microbiol. 70: 383-389.
[134] Wijesundara, N. M., Rupasinghe, V. H. P. (2019). Bactericidal and Anti-Biofilm Activity of Ethanol Extracts Derived from Selected Medicinal Plants against Streptococcus pyogenes.Molecules. 2019, 24, 1165.
[135] Gonelimali, F. D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., Hatab, S. R. (2018). Antimicrobial Properties and Mecha-nism of Action of Some Plant Extracts Against Food Pathogens and Spoilage Microorganisms. Front. Microbiol. 9: 1639.
[136] Gomes, F., Martins, N., Ferreira, I. C. F. R., Henriques, M. (2019). Anti-biofilm activity of hydromethanolic plant extracts against Staphylococcus aureus isolates from bovine mastitis. Heliyon. 5(2019): e01728.
[137] Mithofer, A., Boland, W. (2012). Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol. 63: 431-50.
[138] Dhamgaye, S., Devaux, F., Vandeputte, P., Khandelwal, N. K., Sanglard, D., Mukhopadhyay, G., Prasad R. (2014). Molecular mechanisms of action of herbal antifungal alkaloid berberine, in Candida albicans. PLos One. 9: e104554.
[139] Bhadra, K., Maiti Mand Kumar, G. S. (2008). Berberine-DNA complexation: New insights into the cooperative binding and energetic aspects. Biochim. Biophys. Acta. 1780: 1054-1061.
[140] Zhu, S. L., Yan, L., Zhang, Y. X., Jiang, Z. H., Gao, P. H., Qiu, Y., Wang, L., Zhao, M. Z., Ni, T. J., Cai, Z., Tian, S. J., Zang, C. X., Zhang, D. Z., Jiang, Y. Y. (2014). Berberine inhibits fluphenazine-induced up-regulation of CDR1 in Candida albicans. Biol. Pharm. Bull. 37:268-273.
[141] Moyo, B., Masika, P. J., Muchenje, V. (2012). Antimicrobial activities of Moringa oleifera lam extracts. Afr. J. Biotechnol. 11(11): 2797-2802.
[142] Yun, J., Lee, H., Ko, H. J., Woo, E.R., Lee, D. G. (2015). Fungicidal effect of isoquercitrin via inducing membrane disturbance. Biochim. Biophys. Acta. 1848: 695-701.
[143] Sitheeque, M. A., Panagoda, G. J., Yau, J., Amarakoon, A. M., Udagama, U. R., Samaranayake, L. P. (2009). Antifungal activity of black tea polyphenols (catechins and theaflavins) against Candida species. Chemotherapy. 55: 189-196.
[144] Choi, H., Lee, D. G. (2015). Lycopene induces apoptosis in Candida albicans through reactive oxygen species production and mitochondrial dysfunction. Biochimie. 115: 108-115.
[145] Sung, W. S, Lee, I. S., Lee, D. G. (2007). Damage to the cytoplasmic membrane and cell death caused by lycopene in Candida albicans. J MICROBIOL BIOTECHN. 17: 1797-1804.
[146] Ferreira, A. L., Yeum, K. J., Matsubara, L. S., Matsubara, B. B., Correa, C. R., Pereira, E. J., Russell, R. M., Krinsky, N. I., Tang, G. (2007). Doxorubicin as an antioxidant: maintenance of myocardial levels of lycopene under doxorubicin treatment. Free Radic Biol Med. 43: 740-751.
[147] Plaper, A., Golob, M., Hafner, I., Oblak, M., Solmajer, T., Jerala, R. (2003). Characterization of quercetin binding site on DNA gyrase.Biochem Biophys Res Commun. 306(2): 530-536.
[148] Mirzoeva, O. K., Grishanin, R. N., Calder, P. C. (1997). Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria. Microbiol. Res. 152(3): 239-246.
[149] Jones, G. A., McAllister, T. A., Muir, A. D., Cheng, K. J. (1994). Effects of sainfoin (Onobrychis viciifolia scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Appl. Environ. Microbiol. 60: 1374-1375.
[150] De Vita, D., Friggeri, L. D., Auria, F. D., Pandolfi, F., Piccoli, F., Panella, S., Palamara, A. T., Simonetti, G., Scipione, L., Di Santo, R., Costi, R., Tortorella, S. (2014). Activity of caffeic acid derivatives against Candida albicans biofilm. Bioorg Med Chem Lett. 24(6): 1502-5. doi: 10.1016/j.bmcl.2014.02.005.
[151] Enwa, F. O., Omojate, C. G., JewoAugustina, O., Eze Christopher, O. (2014). Mechanisms of Antimicrobial Actions of Phyto-chemicals against Enteric Pathogens—A Review. J Pharm Chem Biol Sci. 2(2): 77-85. ISSN: 2348-7658. https://www.researchgate.net/publication/271507390_Mechanisms_of_Antimicrobial_Actions_of_Phytochemicals_against_Enteric_Pathogens_-_A_Review.
[152] Gul, M. Z., Bhakshu, L. M., Ahmad, F., Kondapi, A. K., Qureshi, I. A., Ghazi, I. A. (2011). Evaluation of Abelmoschus mo-schatus extracts for antioxidant, free radical scavenging, antimicrobial and antiproliferative activities using in vitro assays. BMC Complement Altern Med. 11:64. https://doi.org/10.1186/1472-6882-11-64.
[153] Kavitha, R., Uduman Mohideen, A. M. (2017). Identification of Bioactive Components and Its Biological Activities of Abel-moschas moschatus Flower Extrtact—A GC-MS Study. IOSR J. Appl. Chem. 10(11): 19-22.
[154] Wan-Ibrahim, W. S., Tuan Nadrah, N. T. I., Siti Farhanah, M., Norzila, I. (2018). GC-MS Analysis of Phytochemical Com-pounds in Aqueous Leaf Extract of Abrus Precatorius. Pertanika J. Trop. Agric. Sci. 41(1): 241-250.
[155] Abubakar, M. N., Majinda Runner, R. T. (2016). GC-MS Analysis and Preliminary Antimicrobial Activity of Albizia adianthi-folia (Schumach) and Pterocarpus angolensis (DC). Medicines (Basel). 3(1): 3. doi: 10.3390/medicines3010003. PMCID: PMC5456228. PMID: 28930113.
[156] Batain, F., Crescencio, K., Alves, T., Souza, J. F., Amaral, V., Castro, J., Santos, C., Jozala, A., Lopes, L., and Chaud, M. (2020). Medicinal plant extract associated with bacterial cellulose membrane: Antibacterial activity and physicochemical properties. Arch Pharm Pharma Sci. 2020; 4: 013-020.
[157] Senhaji, S., Lamchouri, F., Toufik, H. (2020). Phytochemical Content, Antibacterial and Antioxidant Potential of Endemic Plant Anabasis aretioïdes Coss.& Moq. (Chenopodiaceae) Hindawi BioMed Research International. Volume 2020, Article ID 6152932, 16 pages https://doi.org/10.1155/2020/6152932.
[158] Jegadeeswari, P., Nishanthini, A., Muthuasamya, S., Mohan, V. R. (2012). GC-MS analysis of bioactive components of Aris-tolochia krysagathra (Aristolochiaceae). J Curr Chem Pharm Sci. 2(4): 226-232. https://www.tsijournals.com/abstract/ gcms-analysis-of-bioactive-components-of-aristolochia-krysagathra-aristolochiaceae-11419.html. ISSN-2277-2871.
[159] Elezabeth, V. D., Arumugam, S. (2014). GC-MS Analysis of Ethanol Extract of Cyperus rotundus Leaves. Int. J. Curr. Bio-technol. 2(1): 19-23. ISSN: 2321-8371.
[160] Promprom, W., Wannachai, C. (2017). GC-MS Analysis and Antioxidant Activity of Bauhinia nakhonphanomensis Leaf Ethanolic Extract. Phcog J. 9(5): 663-667.
[161] Chiavari-Frederico, M. O., Barbosa, L. N., Carvalho dosSantos, I., Ratti da Silva, G., Fernandes de astro, A., Campos Bortolucci, W., Barboza, L. N., Almeida Campos, C. F., Jose Goncalves, E., Menetrier, J. V., Jacomassi, E., Gazim, Z. C., Wietzikoski, S. (2020). Antimicrobial activity of Asteraceae species against bacterial pathogens isolated from postmenopausal women. PLOS ONEhttps://doi.org/10.1371/journal.pone. 0227023: 1-14.
[162] Taechowisan, T., Suchanya, C., Waya, S. P. (2017). Antibacterial, antioxidant and anticancer activities of biphenyls from Streptomyces sp. BO-07: an endophyte in Boesenbergia rotunda (L.) Mansf A. Food Agric Immunol. 28(6): 1330-1346.
[163] Franelyne, P. C., Agnes, L. C., Mary Jho-Anne, T. C. (2016). GC-MS analyses of bioactive compounds present in different extracts of an endemic plant Broussonetia luzonica (Blanco) (Moraceae) leaves. Asian Pac J Trop Biomed. 6(11): 957-961. https://doi.org/10.1016/j.apjtb.2016.08.015.
[164] Revathi, P., Jeya seelan senthinath, T., Thirumalaikolundhu subramaian, P. (2015). Preliminary Phytochemical Screening and GC-MS Analysis of Ethanolic Extract of Mangrove Plant-Bruguiera Cylindrica (Rhizho) L. International Journal of Pharma-cognosy and Phytochemical Research. 6(4): 729-740.
[165] Prabhakaran, J., Kavitha, D. (2012). Ethnomedicinal importance of Mangrove species of Pitchavaram. Int J. Res Pharma Biomed Sci. 3(2): 611-614.
[166] Ravikumar, S., Gnanadesigan, M., Suganthi, P., Ramalakshmi, A. (2010). Antibacterial potential of chosen mangrove plants against isolated urinary tract infectious bacterial pathogens. Int. J. Med. Med. Sci. 2(3): 94-99.
[167] Kumar. (2014). Plant profile, phytochemistry and pharmacology of Avartani (Helicteres isora Linn.): A review. Asian Pac J Trop Biomed. 4(1): S22-S26.
[168] Mythili, K., Reddy, C. U., Chamundeeswari, D., Manna, P. K. (2013). GC-MS analysis of phytocomponents andin-vitro inhi-bitory effects of Calanthe triplicate. J. Nat. Prod. 6(2013): 141-146.
[169] Manorenjitha, M. S., Norita, A. K., Norhisham, S., Asmawi, M. Z. (2013). GC-MS analyses of bioactive components of Ficus religiosa (LINN.) stem. Int J Pharm Bio Sci. 4(2): 99-103.
[170] Azab Abdullatif. (2017). CAROB (Ceratonia siliqua): Health, medicine and chemistry. Eur. Chem. Bull. 6(10): 456-469. DOI: 10.17628/ecb.2017.6.456-469.
[171] Elansary, H. O., Agnieszka Szopa., Kubica, P. B., Halina Ekiert., Hayssam, M. A., Mohamed, S. E., Abdel-Salam, E. M., Mo-hamed El-Esawi., Diaa O El-Ansary. (2018). Bioactivities of Traditional Medicinal Plants in Alexandria. J Evid Based Com-plementary Altern Med. Article ID 1463579. https://doi.org/10.1155/2018/1463579.
[172] Perumal, R., Sathya, A., Brindha, Pemiah. (2018). GC-MS Evidence Based Herbocure from Indian System of Medicine for Stomach Disorders in Vets. Asian J Anim Vet Adv. 13(1): 73-84.
[173] Venkataraman, B., Samuel, L. A., Pardha Saradhi, M., Narashimha Rao, B., Naga Vamsi Krishna., Sudhakar, M., Radhakrishnan, T. M. (2012). Antibacterial, antioxidant activity and GC-MS analysis of Eupatoriumodoratum. Asian J Pharm Clin Res. 5(2): 99-106.
[174] Sugumar, N., Karthikeyan, S. (2015). Preliminary Phytochemical Screening GC-MS and FTIR Profiling of Methanolic Extract of Leaves on Eupatorium triplinerve Vahl. Int. J. Multidiscip. Res. Dev. 2(8): 335-340.
[175] Rajeswari, G., Murugan, M., Mohan, V. R. (2013). GC-MS analysis of bioactive components of Hugonia mystax L. barks (Li-naceae). J Pharm Biomed Sci. 29(29): 818-824.
[176] Zeb, A., Farhat, U., Muhammad, A., Sajjad, A., Abdul, S. (2017). Demonstration of biological activities of extracts from Isodon rugosus Wall. Ex Benth: Separation and identification of bioactive phytoconstituents by GC-MS analysis in the ethyl acetate extract. BMC COMPLEM ALTERN M. 17: 284.
[177] Lee, S. W., Wendy, W., Julius, Y. F. S., Desy, F. S. (2011). Characterization of antimicrobial, antioxidant, anticancer property and chemical composition of Michelia champaca seed and flower extracts. Stamford j. pharm. sci. 4(1): 19-24.
[178] Saha, H., Apoorva, S., Siddharth, S., Devi Rajeswari, V. (2015). Comparative Evaluation of Antimicrobial and An-ti-Inflammatory Activities of Ocimum sanctum, Phyllanthus niruri and Cadaba fruticosa: An in vitro Approach with Emphasis on Detection of their Bioactive Compounds Using GC-MS. Int. J. Biol. Chem. 9(5): 235-248.
[179] Getasetegn, M., Tefera, Y. (2016). Biological Activities and Valuable Compounds from Five Medicinal Plants. Nat Prod Chem Res. 4(4): 220. DOI: 10.4172/2329-6836.1000220. ISSN: 2329-6836.
[180] Swamy, M. K., Greetha, A., Ravinder, K., Ali, G., Mazina, M. Y., Uma Rani, S. (2017). GC-MS Based Metabolite Profiling, Antioxidant and Antimicrobial Properties of Different Solvent Extracts of Malaysian Plectranthus amboinicus Leaves. J Evid Based Complementary Altern Med.Article ID 1517683, 10 pages.
[181] Elnakady, Y. A., Ahmed, I. R., Raimo Franke., Nael Abutaha., Hossam Ebaid., Mohannad Baabbad,, Mohamed, O. M. O., Ahmad A Al Ghamdi. (2017). Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia. Sci. Rep. 7:41453. doi: 10.1038/srep41453.
[182] Mbosso, E. J., Ngouela, S., Nguedia, J. C., Beng, V. P., Rohmer, M., Tsamo, E. (2010). Invitro antimicrobial activity of extracts and compounds of some selected medicinal plants from Cameroon. J Ethnopharmacol. 128(2): 476-481.
[183] Anjaneyulu, M., Giri, A. (2019). Investigation of Mode of Action of Anti-Bacterial Activity of Salacia oblonga extract against drug resistant pathogen. Brazilian Archives of Biology and Technology. 62: e19180051, http://dx.doi.org/10.1590/1678-4324-2019180051. ISSN 1678-4324 Online Edition.
[184] Asong, J. A., Amoo, S. O., McGaw, L. J., Nkadimeng, S. M., Aremu, A. O., Otang-Mbeng, W. (2019). Antimicrobial Activity, Antioxidant Potential, cytotoxicity and phytochemical profiling of four plants locally used against Skin Diseases. Plants, 8, 350; doi: 10.3390/plants8090350.
[185] Adnan, M., Ali, S., Sheikh, K., Amber, R. (2019). Review on antibacterial activity of Himalayan medicinal plants traditionally used to treat pneumonia and Tuberculosis. J Pharm and Pharmacol, 71: 1599-1625.
[186] Okeke., I. C., Ezeabara, C. A. (2018). Phytochemical screening and in vitro antimicrobial activity of various parts of Cleome ciliata Schum. & Thonn. Bioscience Horizons. 11.10.1093/biohorizons/hzy018.
[187] Yadav, S. (2019). Assessment of antimicrobial activity of selected plant extracts for application on textiles. Int. J. of Chem. Stud. 7(1): 33-36.
[188] Safari, M., Ahmady-Asbchin, S. (2019). Evaluation of antioxidant and antibacterial activities of methanolic extractof medlar (Mespilus germanica L.) leaves. Biotechnology & biotechnological equipment. 33(1): 372-378.
[189] Sood, H., Kumar, Y., Gupta, V. K., Arora, D. S. (2019). Scientific validation of the antimicrobial and antiproliferative potential of Berberis aristata DC root bark, its phytoconstituents and their biosafety. AMB Expr. (2019)9: 143. https://doi.org/10.1186/s13568-019-0868-4.
[190] Agarwal, S., Ramamurthy, P. H., Fernandes, B., Rath, A., Sidhu, P. (2019). Assessment of antimicrobial activity of different concentrations of Tinospora cordifolia against Streptococcus mutans: An in vitro study. Dent Res J. 16(1): 24-28. Available from: http://www.drjjournal.net/text.asp?2019/16/1/24/249556.
[191] Askarinia, M., Ganji, A., Jadidi-Niaragh, F., Hasanzadeh, S., Mohammadi, B., Ghalamfarsa, F., Ghalamfarsa, G., Mahmoudi, H. (2019). A review on medicinal plant extracts and their active ingredients against methicillin-resistant and methicillin-sensitive Staphylococcus aureus. J Herbmed Pharmacol. 2019; 8(3): 173-184. doi: 10.15171/jhp.2019.27.
[192] Atef, N. M., Shanab, S. M., Negm, S. I., Abbas, Y. A. (2019). Evaluation of antimicrobial activity of some plant extracts against antibiotic susceptible and resistant bacterial strains causing wound infection. Bull. Natl. Res. Cent. (2019) 43: 144. https://doi.org/10.1186/s42269-019-0184-9.
[193] Durgawale, P. P., Patil, M. N., Joshi, S. A., Korabu, K. S., Datkhile, K. D. (2019). Studies on phytoconstituents, in vitro anti-oxidant, antibacterial, antiparasitic, antimicrobial, and anticancer potential of medicinal plant Lasiosiphon eriocephalus decne (Family: Thymelaeaceae). J Nat Sc Biol Med. 10:38-47. Available from: http://www.jnsbm.org/text.asp?2019/10/1/38/251501.