References
[1] C. A. Marinho, C. De Souza, T. Motomura, A. G. da S. Silva, (2012). In-service flares inspection by unmanned aerial vehicles (UAVs), in: 18th World Conf. Nondestruct. Test., Durban, South Africa, 2012: pp. 16-20.
[2] R. R. S. de Melo, D. B. Costa, J. S. Álvares, J. Irizarry. (2017). Applicability of unmanned aerial system (UAS) for safety in-spection on construction sites, Saf. Sci. 98(2017), 174-185. doi:10.1016/j.ssci.2017.06.008.
[3] N. Metni, T. Hamel. (2007). A UAV for bridge inspection: Visual servoing control law with orientation limits, Autom. Constr., 17(2007), 3-10. doi:10.1016/j.autcon.2006.12.010.
[4] C. Eschmann, C. M. Kuo, C. H. Kuo, C. Boller. (2012). Unmanned aircraft systems for remote building inspection and moni-toring, Saarbrücken, Germany, 2012.
[5] S. Sadovnychiy. (2004). Count buffon on cultural changes of the physical environment, in: 8th WSEAS Int. Conf. Syst., Athens, Greece, 2004. doi:10.1111/j.1467-8306.1960.tb00325.x.
[6] H. Kim, S. H. Sim, S. Cho. (2015). Unmanned aerial vehicle (UAV)-powered concrete crack detection based on digital image processing, in: 6th Int. Conf. Adv. Exp. Struct. Eng., Urbana-Champaign, United States, 2015.
[7] U. Papa, S. Ponte. (2018). Preliminary design of an unmanned aircraft system for aircraft general visual inspection, Electron. 7 (2018). doi: 10.3390/electronics7120435.
[8] A. A. Ab Rahman, W. S. Wan Mohd Jaafar, K. N. Abdul Maulud, N. M. Noor, M. Mohan, A. Cardil, C. A. Silva, N. N. Che’Ya, N. I. Naba. (2019). Applications of Drones in Emerging Economies: A case study of Malaysia, in: 6th Int. Conf. Sp. Sci. Commun. Iconsp., Johor Bahru, Malaysia, 2019. doi:10.1109/IconSpace.2019.8905962.
[9] S. Chen, Y. Tong. (2012). Integrated Remote Sensing and Visualization: Phase Two, Web-GIS Based Bridg. Inf. Database. 4 (2012). https://ntl.bts.gov/lib/54000/54800/54876/PhaseII_USDOT_UNCC_Vol4-FinalRpt.pdf.
[10] S. Park, Y. Yamaguchi, D. Kim. (2013). Remote Sensing of Environment Polarimetric SAR remote sensing of the 2011 Tohoku earthquake using ALOS/PALSAR, Remote Sens. Environ. 132 (2013) 212–220. doi:10.1016/j.rse.2013.01.018.
[11] R. Kumar Sing. (2005). Pattern Recognition in Remote-Sensing Imagery using Data Mining and Statistical Techniques, PhD Thesis, Purdue University, 2005.
[12] L. Dong, J. Shan. (2013). A comprehensive review of earthquake-induced building damage detection with remote sensing tech-niques, ISPRS J. Photogramm. Remote Sens. 84 (2013), 85-99. doi:10.1016/j.isprsjprs.2013.06.011.
[13] S. Ghaffarian, N. Kerle, T. Filatova. (2018). Remote sensing-based proxies for urban disaster risk management and resilience: A review, Remote Sens. 10(2018). doi: 10.3390/rs10111760.
[14] M. Gordan, Z. Ismail, H. A. Razak, Z. Ibrahim. (2017). Vibration-Based Structural Damage Identification Using Data Mining, in: 24th Int. Congr. Sound Vib. London, 2017.
[15] M. Gordan, H. A. Razak, Z. Ismail, K. Ghaedi. (2017). Recent developments in damage identification of structures using data mining, Lat. Am. J. Solids Struct. 14(2017), 2373-2401. doi:10.1590/1679-78254378.
[16] M. Gordan, H. A. Razak, Z. Ismail, K. Ghaedi, Z. X. Tan, H. H. Ghayeb. (2020). A hybrid ANN-based imperial competitive algorithm methodology for structural damage identification of slab-on-girder bridge using data mining, Appl. Soft Comput. J. 88 (2020) 106013. doi:10.1016/j.asoc.2019.106013.
[17] M. Gordan, Z. Ismail, H. Abdul Razak, K. Ghaedi, Z. Ibrahim, Z. X. Tan, H. H. Ghayeb. (2020). Data mining-based damage identification of a slab-on-girder bridge using inverse analysis, Measurement. 151(2020), 107175. doi:10.1016/j.measurement.2019.107175.
[18] K. Ghaedi, Z. Ibrahim. (2017). Earthquake Prediction, in: T. Zouaghi (Ed.), Earthquakes-Tectonics, Hazard Risk Mitig., InTech, 2017: pp. 205-227. doi:10.5772/65511.
[19] Z. X. Tan, D. P. Thambiratnam, T. H. T. Chan, M. Gordan, H. Abdul Razak. (2019). Damage detection in steel-concrete com-posite bridge using vibration characteristics and artificial neural network, Struct. Infrastruct. Eng. (2019), 1-15. doi:10.1080/15732479.2019.1696378.
[20] M. Gordan, Z. Ismail, Z. Ibrahim, H. Hashim. (2019). Data Mining Technology for Structural Control Systems: Concept, De-velopment, and Comparison, in: Recent Trends Artif. Neural Networks, IntechOpen Limited, London, 2019. doi:10.5772/intechopen.88651.
[21] M. U. Hanif, Z. Ibrahim, K. Ghaedi, H. Hashim, A. Javanmardi. (2018). Damage assessment of reinforced concrete structures using a model-based nonlinear approach—A comprehensive review, Construction and Building Materials. 192(2018), 846-865.doi:10.1016/j.conbuildmat.2018.10.115.
[22] A. Javanmardi, Z. Ibrahim, K. Ghaedi, N. Bahadur Khan, H. Benisi Ghadim. (2018). Seismic isolation retrofitting solution for an existing steel cable-stayed bridge, PLoS ONE (2018), 13(7).doi.org/10.1371/journal.pone.0200482.
[23] H. H. Ghayeb, H. A. Razak, N. H. R. Sulong, A. N. Hanoon, F. Abutaha, H. A. Ibrahim, M. Gordan, M. F. Alnahhal. (2019). Predicting the Mechanical Properties of Concrete Using Intelligent Techniques to Reduce CO 2 Emissions, Mater. Construcción. 69(2019), 1-20.
[24] S. A. Ravanfar. (2017). Vibration-Based Structural Damage Detection and System Identification Using Wavelet Multiresolution Analysis, Doctor of Philosophy Thesis, University of Malaya, 2017.
[25] M. Gordan, H. A. Razak, Z. Ismail, K. Ghaedi. (2018). Data mining based damage identification using imperialist competitive algorithm and artificial neural network, Lat. Am. J. Solids Struct., 15(2018), 1-14. doi:http://dx.doi.org/10.1590/1679-78254546.
[26] M. Gordan, Z. B. Ismail, H. A. Razak, K. Ghaedi. (2019). Optimization-Based Evolutionary Data Mining Techniques for Structural Health Monitoring, J. Civ. Eng. Constr., 9(2019), 14-23.
[27] W. H. Maes, K. Steppe. (2019). Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture, Trends Plant Sci., 24(2019), 152-164. doi:10.1016/j.tplants.2018.11.007.
[28] D. Kinaneva, G. Hristov, J. Raychev, P. Zahariev. (2019). Early forest fire detection using drones and artificial intelligence, in: 2nd Int. Conv. Inf. Commun. Technol. Electron. Microelectron. MIPRO 2019-Proc., Croatian Society MIPRO, 2019: pp. 1060-1065. doi:10.23919/MIPRO.2019.8756696.
[29] P. Darby, V. Gopu. (2018). Bridge Inspecting with Unmanned Aerial Vehicles R & D, 2018.
[30] M. Wazid, A. K. Das, N. Kumar, A. V. Vasilakos, J. J. P. C. Rodrigues. (2019). Design and analysis of secure lightweight re-mote user authentication and key agreement scheme in internet of drones deployment, IEEE Internet Things J., 6(2019), 3572-3584. doi:10.1109/JIOT.2018.2888821.
[31] K. Ghaedi, Z. Ibrahim, A. Javanmardi, R. Rupakhety. (2018). Experimental study of a new bar damper device for vibration control of structures subjected to earthquake loads. Journal of Earthquake Engineering, (2018), 1-19. doi:10.1080/13632469.2018.1515796.
[32] Y. Dong, Q. Li, A. Dou, X. Wang. (2011). Journal of Asian Earth Sciences Extracting damages caused by the 2008 Ms 8. 0 Wenchuan earthquake from SAR remote sensing data, 40(2011), 907-914. doi:10.1016/j.jseaes.2010.07.009.
[33] Y. Pang, B. K. Chen, W. Liu, S. Fung, S. N. Lingamanaik. (2020). Development of a non-contact and non-destructive laser speckle imaging system for remote sensing of anisotropic deformation around fastener holes. NDT E Int. 111(2020), 102219. doi:10.1016/j.ndteint.2020.102219.
[34] M. Talebkhah, A. Sali, M. Marjani, M. Gordan, S. J. Hashim, F. Z. Rokhani. (2020). Edge computing: Architecture, Applications and Future Perspectives, in: IICAIET2020 (IEEE Int. Conf. Artif. Intell. Eng. Technol., Sabah, Malaysia, 2020).