References
[1] Louis, D. N., Perry, A., Reifenberger, G., et al. (2016). The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol, 2016, 131: 803-820.
[2] Fengjia Li, Yue Zhang, Naiwu Wang, et al. (2020). Evaluation of the Prognosis of Neuroglioma Based on Dynamic Magnetic Resonance Enhancement. World Neurosurgery, 2020, S1878-8750.
[3] Dahlrot, R. H. (2014). The prognostic value of clinical factors and cancer stem cell-related markers in gliomas. Dan Med J., 2014, 61: B4944.
[4] Ampie, L., Choy, W., Lamano, J. B., et al. (2015). Prognostic factors for recurrence and complications in the surgical management of primary chordoid gliomas: asystematic review of literature. Clin Neurol Neurosurg, 2015, 138: 129-136.
[5] Chicklore, S., Goh, V., Siddique, M., et al. (2013). Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging, 2013, 40: 133‐140.
[6] Ganeshan, B., Goh, V., Mandeville, H. C., et al. (2013). Non-small cell lung cancer: histopathologic correlates for texture pa-rameters at CT. Radiology, 2013, 266: 326‐336.
[7] Jensen, J. H., Helpern, J. A., Ramani, A., et al. (2005). Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging. Magnetic Resonance in Medicine, 2005, 53: 1432.
[8] Raab, P., Hattingen, E., Franz, K., et al. (2010). Cerebral Gliomas: Diffusional Kurtosis Imaging Analysis of Microstructural Differences. Radiology, 2010, 254: 876-881.
[9] Tabesh, A., Jensen, J. H., Ardekani, B. A., et al. (2011). Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med., 2011, 65: 823-836.
[10] Hui, E. S., Cheung, M. M., Qi, L., et al. (2008). Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis. NeuroImage, 2008, 42: 122-134.
[11] Falk Delgado A., Nilsson M., van Westen D., et al. (2018). Glioma Grade Discrimination with MR Diffusion Kurtosis Imaging: A Meta-Analysis of Diagnostic Accuracy. Radiology, 2018, 287: 119-127.
[12] Zhang, J., Jiang, J., Zhao, L., et al. (2019). Survival prediction of high-grade glioma patients with diffusion kurtosis imaging. Am J Transl Res., 2019, 11: 3680-3688.
[13] Zhao, J., Wang, Y. L., Li, X. B., et al. (2019). Comparative analysis of the diffusion kurtosis imaging and diffusion tensor im-aging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status. J Neurooncol, 2019, 141: 195-203.
[14] Just, N. (2014). Improving tumour heterogeneity MRI assessment with histograms. Br J Cancer, 2014, 111: 2205‐2213.
[15] Raja, R., Sinha, N., Saini, J., et al. (2016). Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas. Neuroradiology, 2016, 58: 1217‐1231.
[16] Jakab, A., Molnár, P., Emri, M., et al. (2011). Glioma grade assessment by using histogram analysis of diffusion tensor imag-ing-derived maps. Neuroradiology, 2011, 53: 483-491.
[17] Garzón, B., Emblem, K. E., Mouridsen, K., et al. (2011). Multiparametric analysis of magnetic resonance images for glioma grading and patient survival time prediction. Acta Radiologica, 2011, 52: 1052-1060.
[18] Kim, H., Choi, S. H., Kim, J. H., et al. (2013). Gliomas: application of cumulative histogram analysis of normalized cerebral blood volume on 3 T MRI to tumor grading. Plos One, 2013, 8: e63462.
[19] Hempel, J. M., Schittenhelm, J., Brendle, C., et al. (2017). Histogram analysis of diffusion kurtosis imaging estimates for in vivo assessment of 2016 WHO glioma grades: A cross-sectional observational study. European Journal of Radiology, 2017, 95: 202-211.
[20] Qi, X. X., Shi, D. F., Ren, S. X., et al. (2018). Histogram analysis of diffusion kurtosis imaging derived maps may distinguish between low and high grade gliomas before surgery. Eur Radiol, 2018, 28: 1748-1755.
[21] Hempel, J. M., Brendle, C., Bender, B. (2019). Diffusion kurtosis imaging histogram parameter metrics predicting survival in integrated molecular subtypes of diffuse glioma: An observational cohort study. Eur J Radiol, 2019, 112: 144-152.
[22] Xie, H., Wu, G. (2018). Application of Diffusion Kurtosis Imaging and Histogram Analysis for Assessing Preoperative Stages of Rectal Cancer. Gastroenterol Res Pract, 2018: 9786932.
[23] Xu, X. Q., Ma, G., Wang, Y. J., et al. (2017). Histogram analysis of diffusion kurtosis imaging of nasopharyngeal carcinoma: Correlation between quantitative parameters and clinical stage. Oncotarget, 2017, 8: 47230-47238.
[24] Li, T., Hong, Y., Kong, D., et al. (2020). Histogram analysis of diffusion kurtosis imaging based on whole-volume images of breast lesions. J MagnReson Imaging, 2020, 51: 627‐634.
[25] Rosenkrantz, A. B., Padhani, A. R., Chenevert, T. L., et al. (2015). Body Diffusion Kurtosis Imaging: Basic Principles, Appli-cations, and Considerations for Clinical Practice. J MagnReson Imaging, 2015, 42: 1190-202.
[26] Rose, S., Fay, M., Thomas, P., et al. (2013). Correlation of MRI-derived apparent diffusion coefficients in newly diagnosed gliomas with [18F]- fluoro-L-dopa PET: what are we really measuring with minimum ADC? AJNR, 2013, 34: 758-764.
[27] Maier, S. E., Sun, Y., Mulkern, R. V. (2010). Diffusion imaging of brain tumors. NMR Biomed, 2010, 23: 849-864.
[28] Tietze, A., Hansen, M. B., Ostergaard, L., et al. (2015). Mean diffusional kurtosis in patients with glioma: initial results with a fast imaging method in a clinical setting. AJNR, 2015, 6: 1472-1478.
[29] Jensen, J. H., Helpern, J. A., Ramani, A., et al. (2005). Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. MagnReson Med., 2005, 53: 1432-1440.
[30] Van Cauter, S., Veraart, J., Sijbers, J., et al. (2012). Gliomas: diffusion kurtosis MR imaging in grading. Radiology, 2012, 263: 492-501.
[31] Lee, H. Y., Na, D. G., Song, I. C., et al. (2008). Diffusion-tensor imaging for glioma grading at 3-T magnetic resonance imaging: analysis of fractional anisotropy and mean diffusivity. J Comput Assist Tomogr, 2008, 32: 298-303.
[32] Bai, Y., Lin, Y., Tian, J., et al. (2016). Grading of gliomas by Using Monoexponential, Biexponential, and stretched exponential Diffusion-weighted MR imaging and Diffusion Kurtosis MR imaging. Radiology, 2016, 278: 496-504.
[33] Tietze, A., Hansen, M. B., Østergaard, L., et al. (2015). Mean Diffusional Kurtosis in Patients with Glioma: Initial Results with a Fast Imaging Method in a Clinical Setting. AJNR, 2015, 36: 1472-1478.
[34] Wu, E. X., Cheung, M. M. (2010). MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed, 2010, 23: 836-848.
[35] Jiang, R., Jiang, J., Zhao, L., et al. (2015). Diffusion kurtosis imaging can effciently assess the glioma grade and cellular proli-feration. Oncotarget, 2015, 6: 42380-42393.