References
[1] Tamele, I. J., Vázquez Loureiro, P. (2020). Lead, Mercury and Cadmium in Fish and Shellfish from the Indian Ocean and Red Sea (African Countries): Public Health Challenges. J Mar Sci Eng 8:344. https://doi.org/10.3390/jmse8050344.
[2] Flora, G., Gupta, D., Tiwari, A. (2012). Toxicity of lead: a review with recent updates. Interdiscip Toxicol, 5: 47-58. https://doi.org/10.2478/v10102-012-0009-2.
[3] Allen, T., Singhal R., Rana, S. V. S. (2004). Resistance to Oxidative Stress in a Freshwater Fish Channa punctatus After Expo-sure to Inorganic Arsenic. Biol Trace Elem Res., 98: 63-72. https://doi.org/10.1385/BTER:98:1:63.
[4] Allen, T., Rana, S. V. S. (2004). Effect of Arsenic (AsIII) on Glutathione-Dependent Enzymes in Liver and Kidney of the Freshwater Fish Channa punctatus. Biol Trace Elem Res., 100: 039-048. https://doi.org/10.1385/BTER:100:1:039.
[5] Sangeeta Das. (2012). Toxicological effects of arsenic exposure in a freshwater teleost fish, Channa punctatus. AFRICAN J Biotechnol, 11. https://doi.org/10.5897/AJB11.2808.
[6] Shaw, J. R., Jackson, B., Gabor, K., et al. (2007). The Influence of Exposure History on Arsenic Accumulation and Toxicity in the Killifish, Fundulus Heteroclitus. Environ Toxicol Chem., 26: 2704. https://doi.org/10.1897/07-032.1.
[7] Tsai, J.-W., Huang, Y.-H., Chen, W.-Y., Liao, C.-M. (2012). Detoxification and bioregulation are critical for long-term water-borne arsenic exposure risk assessment for tilapia. Environ Monit Assess., 184: 561-572. https://doi.org/10.1007/s10661-011-1988-8.
[8] Kumari, B., Ahsan, J. (2011). Study of muscle glycogen content in both sexes of an Indian teleost Clarias batrachus (Linn.) exposed to different concentrations of Arsenic. Fish Physiol Biochem., 37: 161-167. https://doi.org/10.1007/s10695-010-9427-2.
[9] De Smet, H., Blust, R. (2001). Stress Responses and Changes in Protein Metabolism in Carp Cyprinus carpio during Cadmium Exposure. Ecotoxicol Environ Saf., 48: 255-262. https://doi.org/10.1006/eesa.2000.2011.
[10] Lemaire-Gony, S., Lemaire, P. (1992). Interactive effects of cadmium and benzo(a)pyrene on cellular structure and biotrans-formation enzymes of the liver of the European eel Anguilla anguilla. Aquat Toxicol., 22: 145-159. https://doi.org/10.1016/0166-445X(92)90029-M.
[11] Grose, E. C., Richards, J. H., Jaskot, R. H., et al. (1987). Glutathione peroxidase and glutathione transferase activity in rat lung and liver following cadmium inhalation. Toxicology, 44: 171-179. https://doi.org/10.1016/0300-483X(87)90147-8.
[12] Sevcikova, M., Modra, H., Slaninova, A., Svobodova, Z. (2011). Metals as a cause of oxidative stress in fish: a review. Vet Med (Praha)., 56: 537-546. https://doi.org/10.17221/4272-VETMED.
[13] Kovarova, J., Celechovska, O., Kizek, R., et al. (2009). Effect of metals, with special attention of Cd, content of the Svitava and Svratka rivers on levels of thiol compounds in fish liver and their use as biochemical markers. Neuro Endocrinol Lett 30 Suppl., 1: 169-76.
[14] Cao, L., Huang, W., Liu, J., et al. (2010). Accumulation and oxidative stress biomarkers in Japanese flounder larvae and juveniles under chronic cadmium exposure. Comp Biochem Physiol Part C Toxicol Pharmacol., 151: 386-392. https://doi.org/10.1016/j.cbpc.2010.01.004.
[15] Ay, O., Kalay, M., Tamer, L., Canli, M. (1999). Copper and Lead Accumulation in Tissues of a Freshwater Fish Tilapia zillii and Its Effects on the Branchial Na, K-ATPase Activity. Bull Environ Contam Toxicol., 62: 160-168. https://doi.org/10.1007/s001289900855.
[16] Ribeiro, A. M., Risso, W. E., Fernandes, M. N., Martinez, C. B. R. (2014). Lead accumulation and its effects on the branchial physiology of Prochilodus lineatus. Fish Physiol Biochem., 40: 645-657. https://doi.org/10.1007/s10695-013-9873-8.
[17] Reid, S. D., McDonald, D. G. (1991). Metal Binding Activity of the Gills of Rainbow Trout (Oncorhynchus mykiss). Can J Fish Aquat Sci., 48: 1061-1068. https://doi.org/10.1139/f91-125.
[18] Low, K. H., Zain, S. M., Abas, M. R. (2011). Evaluation of Metal Concentrations in Red Tilapia (Oreochromis spp) from Three Sampling Sites in Jelebu, Malaysia Using Principal Component Analysis. Food Anal Methods, 4: 276-285. https://doi.org/10.1007/s12161-010-9166-0.
[19] Thang, N. Q., Huy, B. T., Van Tan, L., Phuong, N. T. K. (2017). Lead and Arsenic Accumulation and Its Effects on Plasma Cortisol Levels in Oreochromis sp. Bull Environ Contam Toxicol., 99: 187-193. https://doi.org/10.1007/s00128-017-2113-7.
[20] Jovičić, K., Nikolić, D. M., Višnjić-Jeftić, Ž., et al. (2015). Mapping differential elemental accumulation in fish tissues: as-sessment of metal and trace element concentrations in wels catfish (Silurus glanis) from the Danube River by ICP-MS. Environ Sci Pollut Res Int., 22: 3820-7. https://doi.org/10.1007/s11356-014-3636-7.
[21] Has-Schön, E., Bogut, I., Vuković, R., et al. (2015). Distribution and age-related bioaccumulation of lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As) in tissues of common carp (Cyprinus carpio) and European catfish (Sylurus glanis) from the Buško Blato reservoir (Bosnia and Herzegovina). Chemosphere, 135: 289-296. https://doi.org/10.1016/j.chemosphere. 2015.04.015.
[22] Evans, D. W., Dodoo, D. K., Hanson, P. J. (1993). Trace element concentrations in fish livers: Implications of variations with fish size in pollution monitoring. Mar Pollut Bull., 26: 329-334. https://doi.org/10.1016/0025-326X(93)90576-6.
[23] Amiard, J., Amiard-Triquet, C., Barka, S., et al. (2006). Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers. Aquat Toxicol., 76: 160-202. https://doi.org/10.1016/j.aquatox.2005.08.015.
[24] Kumari, B., Kumar, V., Sinha, A. K., et al. (2017). Toxicology of arsenic in fish and aquatic systems. Environ Chem Lett., 15: 43-64. https://doi.org/10.1007/s10311-016-0588-9.
[25] Thang, N. Q., Phuong, N. T. K., Van Tan, L. (2017). Endocrine stress response in Oreochromis sp. from exposure to waterborne cadmium: the plasma cortisol analysis. Toxicol Environ Chem., 99: 285-293. https://doi.org/10.1080/02772248. 2016.1172583.
[26] Tulasi, S. J., Reddy, P. U. M., Ramana Rao, J. V. (1992). Accumulation of lead and effects on total lipids and lipid derivatives in the freshwater fish Anabas testudineus (Bloch). Ecotoxicol Environ Saf., 23: 33-38. https://doi.org/10.1016/0147-6513(92)90019-Y.
[27] Allen, P. (1994). Accumulation profiles of lead and the influence of Cadmium and Mercury in Oreochromis aureus (Steindachner) during Chronic exposure. Toxicol Environ Chem., 44: 101-112. https://doi.org/10.1080/02772249409358048.
[28] Claiborne, J. B., Edwards, S. L., Morrison-Shetlar, A. I. (2002). Acid-base regulation in fishes: cellular and molecular mechan-isms. J Exp Zool., 293: 302-319. https://doi.org/10.1002/jez.10125.
[29] Gonick, H. C. (2011). Lead-Binding Proteins: A Review. J Toxicol., 2011: 1-10. https://doi.org/10.1155/2011/686050.