Journal of Applied Mathematics and Computation

ISSN Print: 2576-0645 Downloads: 118996 Total View: 1587944
Frequency: quarterly ISSN Online: 2576-0653 CODEN: JAMCEZ
Email: jamc@hillpublisher.com
Article http://dx.doi.org/10.26855/jamc.2021.03.005

Ion Acoustic Waves in Weakly Relativistic Plasma—Separation of Relativistic and Electron-Temperature Effects

Yair Zarmi

Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel.

*Corresponding author: Yair Zarmi

Published: March 12,2021

Abstract

The choice of the expansion parameter employed in the analysis of the equations of weakly relativistic plasma affects the physical significance of the results.  Traditionally, the small parameter employed in the non-relativistic and weak relativistic limits has been the order of magnitude of (v/v0), where v is the ion velocity, and v0 is proportional to the average electron velocity. However, in the weak relativistic case, the order of magnitude of (v/c), where c is the speed of light is the more natural choice. The resulting KdV equation with perturbations through second order is analyzed through a Normal Form expansion. The analysis exposes physical effects in corrections beyond lowest order, which hitherto have not be identified: (1) Effect of localized soliton interaction region; (2) Long-range interactions among solitons; (3) Dispersive waves generated by soliton interactions. In addition, the analysis provides information regarding: (1) Clear distinction between non-relativistic and weak relativistic effects; (2) Clear separation between relativistic and electron-temperature effects; (3) Variation of the effective small parameter used in the series expansion of the solution as the average electron kinetic energy is increased. These qualitative features do not depend on the details of the electron-gas thermodynamic distribution.

References

[1] K. K. Ghosh and D. Ray. (1991). Phys. Fluids, B 3, 300-303.

[2] P. Chatterjee and R. Roychoudhury. (1994). Phys. Plasmas, 1, 2148-2153.

[3] R. Gogoi, N. Devi, and G. C. Das. (2008). Ind. J. Pure & Appl. Phys., 46, 621-628.

[4] R. S. Ibrahim and O. H. El-Kalaawy. (2008). Adv. Studies. Theor. Phys., 2, 919-928.

[5] A. Shah and R. Saeed. (2009). Phys. Lett., A 373, 4164-4168.

[6] H. R. Pazkad and K. Javidan. (2011). Astrophys. Space Sci., 331, 175-180.

[7] B. Sahu. (2011). Pranama J. Phys., 76, 933-944.

[8] A. Rahman, I. Kourakis, and A. Qamar. (2015). IEEE Trans. Plasma Sci., 43, 974-984.

[9] S. Chandra, S. Das, A. Chandra, B. Ghosh, and A. Jash. (2015). Int’l J. Nucl. Quant. Eng., 9, 305-311.

[10] M. R. Hossen, M. A. Hossen, S. Sultana, and A. A. Mamun. (2015). Astrophys. Space Sci., 357(34), 1-8.

[11] M. G. Hafez, M. R. Talukder, and M. Hossain Ali. (2016). Waves in Random & Complex Media, 26, 68-80.

[12] V. Yu. Belashov. (2017). Geomagnetism & Aeronomy, 57, 307-311.

[13] I. S. Elkamash, I. Kourakis, and F. Haas. (2017). Phys. Rev., E96, 043206.

[14] B. Hosen, M. G. Shah, M. R. Hossen, and A. A. Mamun. (2018). Plasma Phys. Rep., 44, 976-985.

[15] M. Kr. Deka, A. N. Dev, A. P. Misra, and N. C. Adhikary. (2018). Phys. Plasmas, 25, 012102.

[16] S. K. El-Labany, M. S. Abdel Krim, S. A. El-Warraki, and W. F. El-Taibany. (2003). Chinese Phys., 12, 759-764. 

[17] C. S. Panguetna, C. B. Tabi, and T. C. Kofané. (2019). J. Theor. & Appl. Phys., 13, 237-249.

[18] G. C. Das and S. N. Paul. (1985). Phys. Fluids, 28, 823-825.

[19] G. C. Das, B. Karmakar, and S. N. Paul. (1988). IEEE Trans. Plasma Sci., 16, 22-26.

[20] E. F. EL-Shamy, E. K. El-Shewy, N. F. Abdo, M. Ould Abdellahi, and O. Al-Hagan. (2019). Contrib. Plasma Phys., 59, 304-313.

[21] Fokas, A. S. and Liu, Q. M. (1996). Phys. Rev. Lett., 77, 2347-2351.

[22] Kodama, Y. (1985). Phys. Lett., A 112, 193-196.

[23] Kodama, Y. (1985). Physica, D 16, 14-26.

[24] Marchant, T. R. and Smyth, N. F. (1996). IMA J. Appl. Math., 56, 157-176.

[25] Kodama, Y. (1987). Normal Form and Solitons, pp. 319-340 in Topics in Soliton Theory and Exactly Solvable Nonlinear Equation, ed. by M.J. Ablowitz et al. (World Scientific, Singapore, 1987).

[26] Hiraoka, Y. and Kodama, Y. (2002). Normal Form and Solitons, Lecture notes, Euro Summer School 2001, The Isaac Newton Institute, Cambridge, August 15-25 (2002).

[27] Marchant, T. R. (2002). Stud. Appl. Math., 109, 1-17.

[28] Mikhailov, A. V. (1991). Talks at NEEDS-91 Conf., Gallipoli, Italy (1991); NATO Adv. Res. Workshop; Singular limits of Dispersive waves, Lyon, France (1991) (unpublished).

[29] Kodama, Y. and Mikhailov, A. V. (1997). Obstacles to Asymptotic Integrability, pp. 173-204 in Algebraic Aspects of Integrable Systems, ed. by A. S. Fokas & I. M. Gelfand (Birkhäuser, Boston, 1997).

[30] Fokas, T. & Luo, L. (1996). Contemp. Math., 200, 85-98.

[31] Kraenkel, R. A., Pereira, J. G., and de Rey Neto, E. C. (1998). Phys. Rev., E58, 2526-2530.

[32] Marchant, T. R. (2002). Phys. Rev., E66, 046623, 1-8.

[33] Veksler, A. and Zarmi, Y. (2004). WSEAS Trans. Math., 3, 560-565.

[34] Y. Zarmi. (2008). Physica, D 237, 2987-3007.

[35] R. M. Mirie and C. H. Su. (1982). J. Fluid Mech., 115, 475-492.

[36] Q. Zou and C. H. Su. (1986). Phys. Fluids, 29, 2113-2123.

How to cite this paper

Ion Acoustic Waves in Weakly Relativistic Plasma—Separation of Relativistic and Electron-Temperature Effects

How to cite this paper: Yair Zarmi. (2021) Ion Acoustic Waves in Weakly Relativistic Plasma—Separation of Relativistic and Electron-Temperature Effects. Journal of Applied Mathematics and Computation5(1), 32-47.

DOI: http://dx.doi.org/10.26855/jamc.2021.03.005