References
[1] Kikonko, M. (2016). On a Non-Definite Sturm-Liouville Problem in the Two-Turning Point Case—Analysis and Numerical Results. Journal of Applied Mathematics and Physics, 4, 1787-1810. http://dx.doi.org/10.4236/ jamp.2016.49184.
[2] Pryce, J. D. (1993). Numerical Solution of Sturm Liouville Problems. Oxford. Clarendon Press, New York.
[3] Kravchenko, V. V. and Porter, R. M. (2010). Spectral Parameter Power Series for Sturm Liouville Problems. Math. Methods Appl. Sci., 33, 459-468. https://doi.org/10.1002/mma.1205.
[4] Alpay, D. (2003). Reproducing Kernel Spaces and Applications. Birkhauser Verlag, Basel, Switzerland. https://doi.org/10.1007/978-3-0348-8077-0.
[5] Berlinet, A. and Thomas-Agnan, C. (2004). Reproducing Kernel Hilbert Spaces in Probability Statistics. Kluwer Academic, Boston, USA.
[6] Vladislav, V. K. (2020). Direct and Inverse Sturm-Liouville Problems: A Method of Solution. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-47849-0.
[7] Li, C. L. and Cui, M. (2003). The exact solution for solving a class nonlinear operator equations in the reproducing Kernel space. Appl. Math. Comput., 143, 393-399. https://doi.org/10.1016/S0096-3003(02)00370-3.
[8] Geng, F. Z. and Cui, M. (2007). Solving a nonlinear system of second order boundary value problems. J. Math. Anal. Appl., 327, 1167-1181. https://doi.org/10.1016/j.jmaa.2006.05.011.
[9] Jiang, W. and Lin, Y. (2011). Representation of exact solution for the time-fractional telegraph equation in the re-producing Kernel space. Commun. Nonlinear Sci. Numer. Simul., 16, 3639-3645. https://doi.org/10.1016/j.cnsns. 2010.12.019.
[10] Geng, F. (2009). A new reproducing Kernel Hilbert space method for solving nonlinear fourth-order boundary value problems. Appl. Math. Comput., 213, 163-169. https://doi.org/10.1016/j.amc.2009.02.053.
[11] Arqub, O. A., Al-Smadi, M., and Shawagfeh, N. (2013). Solving Fredholm integro-differential equations using re-producing Kernel Hilbert space method. Appl. Math. Comput., 219, 8938-8948. https://doi.org/10.1016/j.amc.2013.03.006.
[12] Bushnaq, S., Momani, S., and Zhou, Y. (2012). A reproducing Kernel Hilbert space method for solving inte-gro-differential equations of fractional order. J. Optim. Theory Appl., 156, 96-105. https://doi.org/10.1007/s10957-012-0207-2.
[13] Geng, F. Z., Qian, S. P., and Cui, M. G. (2015). Improved reproducing Kernel method for singularly perturbed dif-ferential-difference equations with boundary layer behavior. Appl. Math. Comput., 252, 58-63. https://doi.org/10.1016/j.amc.2014.11.106.
[14] Boutarfa, B., Akgül, A., and Inc, M. (2017). New approach for the Fornberg-Whitham type equations. J. Comput. Appl. Math., 312, 13-26. https://doi.org/10.1016/j.cam.2015.09.016.
[15] Inc, M., Akgül, A., and Geng, F. (2015). Reproducing Kernel Hilbert space method for solving Bratu’s problem. Bulletin of the Malaysian Math. Sci. Soc., 38, 271-287. https://doi.org/10.1007/s40840-014-0018-8.
[16] Akram, G. and Rehman, H. U. (2013). Numerical solution of eighth order boundary value problems in reproducing Kernel space. Numer. Algorithms, 62, 527-540. https://doi.org/10.1007/s11075-012-9608-4.
[17] Geng, F. Z. and Qian, S. P. (2013). Reproducing Kernel method for singularly perturbed turning point problems having twin boundary layers. Appl. Math. Lett., 26, 998-1004. https://doi.org/10.1016/j.aml.2013.05.006.
[18] Kikonko, M. and Mingarelli, A. B. (2013). On Non-Definite Sturm-Liouville Problems with Two Turning Points. Journal of Applied Mathematics and Computing, 219, 9508-9515. http://dx.doi.org/10.1016/j.amc.2013.03.025.
[19] Ma, R., Gao, C., and Lu, Y. (2018). Spectrum Theory of Second-Order Difference Equations with Indefinite Weight. Journal of Spectral Theory, 8, 971-985. https://doi.org/10.4171/JST/219.
[20] Congmin, Y., Yunlan, G., and Kang, S. (2020). Spectrum of a Class of Difference Operators with Indefinite Weights. Journal of Appl. Math. Phys., Vol. 8, No. 4. https://doi.org/10.4236/jamp.2020.84056.
[21] Okutmuştur, B. (2020). A Survey on Hilbert Spaces and Reproducing Kernels. Intechopen. http://dx.doi.org/10.5772/intechopen.91479.
[22] Cui, M. and Lin, Y. (2009). Nonlinear Numerical Analysis in the Reproducing Kernel Space. NY, USA: Nova Science Publishers, Inc.
[23] Akhiezer, N. I. and Glazman, I. M. (1993). Theory of Linear Operators in Hilbert Space. Dover Publications Inc. New York.