References
[1] Galam, S. (2003). Modelling rumors: the no plane Pentagon French hoax case. Physica A: Statistical Mechanics and Its Applications, 2003, 320: 571-580.
[2] Hayakawa, H. (2002). Sociology of rumor-approach from formal sociology. Seikyusya, Tokyo, 2002.
[3] Kimmel, A. J. (2004). Rumors and rumor control: A manager’s guide to understanding and combatting rumors. Routledge.
[4] Kosfeld, M. (2005). Rumours and markets. Journal of Mathematical Economics, 2005, 41(6): 646-664.
[5] Kawachi, K. (2008). Deterministic models for rumor transmission. Nonlinear analysis: Real world applications, 2008, 9(5): 1989-2028.
[6] Misra, A. K. (2012). A simple mathematical model for the spread of two political parties. Nonlinear Analysis: Modelling and Control, 2012, 17(3): 343-354.
[7] Daley, D. J. and D. G. Kendall. (1964). Epidemics and rumours. Nature, 1964, 204(4963): 1118-1118.
[8] Kimmel, A. J. (2004). Rumors and the financial marketplace. The Journal of Behavioral Finance, 2004, 5(3): 134-141.
[9] Barabási, A.-L. and R. Albert. (1999). Emergence of scaling in random networks. Science, 1999, 286(5439): 509-512.
[10] Kesten, H. and V. Sidoravicius. (2005). The spread of a rumor or infection in a moving population. Annals of Probability, 2005, 33(6): 2402-2462.
[11] Daley, D. J. and D. G. Kendall. (1965). Stochastic rumours. IMA Journal of Applied Mathematics, 1965, 1(1): 42-55.
[12] Maki, D. P. and M. Thompson. (1973). Mathematical models and applications: with emphasis on the social life, and management sciences.
[13] Nekovee, M., et al. (2007). Theory of rumour spreading in complex social networks. Physica A: Statistical Mechan-ics and its Applications, 2007, 374(1): 457-470.
[14] Isham, V., S. Harden, and M. Nekovee. (2010). Stochastic epidemics and rumours on finite random networks. Physica A: Statistical Mechanics and its Applications, 2010, 389(3): 561-576.
[15] Gu, J. and X. Cai. (2007). The forget-remember mechanism for 2-state spreading. arXiv preprint nlin/0702021.
[16] Gu, J., W. Li, and X. Cai. (208). The effect of the forget-remember mechanism on spreading. The European Physical Journal B, 2008, 62(2): 247-255.
[17] Zhao, L., et al. (2013). Rumor spreading model considering forgetting and remembering mechanisms in inhomoge-neous networks. Physica A: Statistical Mechanics and its Applications, 2013, 392(4): 987-994.
[18] Zhao, L., et al. (2012). SIHR rumor spreading model in social networks. Physica A: Statistical Mechanics and its Applications, 2012, 391(7): 2444-2453.
[19] Wan, C., T. Li, and Z. Sun. (2017). Global stability of a SEIR rumor spreading model with demographics on scale-free networks. Advances in Difference Equations, 2017(1): 1-15.
[20] Liu, X., T. Li, and M. Tian. (2018). Rumor spreading of a SEIR model in complex social networks with hesitating mechanism. Advances in Difference Equations, 2018(1): 1-24.
[21] Zhou, Y., et al. (2019). Rumor source detection in networks based on the SEIR model. IEEE access, 2019, 7: 45240-45258.
[22] Lakshmikantham, V., S. Leela, and A. A. Martynyuk. (1989). Stability analysis of nonlinear systems. 1989: Sprin-ger.
[23] Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM review, 2000, 42(4): 599-653.
[24] Van den Driessche, P. and J. Watmough. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical biosciences, 2002, 180(1-2): 29-48.
[25] Hale, J. (1969). Ordinary Differential Equations Wiley. New York. 1969.
[26] La Salle, J. P. (1976). The stability of dynamical systems. 1976: SIAM.
[27] Chitnis, N., J. M. Hyman, and J. M. Cushing. (2008). Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bulletin of Mathematical Biology, 2008, 70(5): 1272.