References
[1] Zink, J., Wyrobnik, T., Prinz, T., Schmid. M. (2016). Physical Chemical and Biochemical Modifications of Protein-Based Films and Coatings : An Extensive Review, 3-45.
[2] Bugusu, K. M. (2007). Food Packaging—Roles, Materials, and Environmental Issues. J Food Sci., 72(3), 39-54.
[3] Raheem, D. (2012). Application of plastics and paper as food packaging materials—An overview. Emir J Food Agric., 2012, 25(3): 177-88.
[4] Ngcdjcs, G. (1994). Edible composite films of wheat gluten and lipids : water vapour permeability and other physical properties. Int J food Sci Technol., 39-50.
[5] Popa, M., Mitelut, A., Niculita, P., Geicu, M., Ghidurus, M., and Turtoi, M. (2009). Biodegradable materials for food packaging applications. Int. work. environ. relantionsh. fram. EU policy, 16-17.
[6] García, M. C., Orellana, J. M., and Marina, M. L. (2016). Novel Applications of Protein By-products in Biomedicine. In Protein Byproducts (pp. 193-211). Academic Press.
[7] Cuq, B., Gontard, N., Cuq, J., and Guilbert, S. (1998). Packaging films based on myofibrillar proteins: Fabrication, properties and applications. Nahrung, 42: 260-263.
[8] Stéphane Guilbert, B. C. (1997). Recent innovations in edible and/or biodegradable packaging materials. Food Additives & Contaminants.
[9] Klose, A. A., Mecchi, E. P., and Hanson, H. L. (1952).Use of antioxidants in the frozen storage of turkeys. Food Technology, 6, 308-311.
[10] Akbari, Z., Ghomashchi, T., and Moghadam, S. (2007). Improvement in food packaging industry with biobased nanocomposites. International Journal of Food Engineering, 3(4).
[11] Okamoto, S. (1978). Factors affecting protein film formation. Cereal Foods World, 23, 256-262.
[12] Torres, J. A. (1994). Edible Films and Coatings from Proteins. Protein Functionality in Food Systems, 467.
[13] Gueguen, J., Viroben, G., Noireaux, P., and Subirade, M. (1998). Influence of plasticizers and treatments on the properties of films from pea proteins. Industrial crops and products, 7(2-3), 149-157.
[14] Jayathilakan, K., Sultana, K., Radhakrishna, Bawa, S. A. (2012). Utilization of byproducts and waste materials from meat, poultry and fish processing industries. J Food Sci Techno, 278-293.
[15] Said, N. S. and Sarbon, N. M. (2019). Protein-Based Active Film as Antimicrobial Food Packaging: A Review. In Active Antimicrobial Food Packaging.
[16] Gómez-Guillén, M. C., Giménez, B., López-Caballero, M. A., and Montero, M. P. (2011). Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids, 25(8), 1813-1827.
[17] Courts, A. (1977). Uses of collagen in edible products. Pages 395-412 in: The Science and Technology of Gelatin. A. G. Ward and A. Courts, eds. Academic Press: New York.
[18] Hood, L. L. (1987). Collagen in sausage casings. Adv. Meat Res., 4: 109-129.
[19] Cuq, B., Gontard, N., Guilbert, S. (1998). Proteins as agricultural polymers for packaging production. Cereal Chemistry. 1998 Jan; 75(1): 1-9.
[20] Grouber, B. (1983). Les gélatines: propriétés, contrôles et principales applications. Labo-Pharm. Problèm, Techn., 337: 909-916.
[21] Uthpala, T. G. G., Navaratne, S. B., and Thibbotuwawa, A. (2020). Review on low‐temperature heat pump drying applications in food industry: Cooling with dehumidification drying method. Journal of Food Process Engineering, 43(10), e13502.
[22] Wittaya, T. (2012). Protein-based edible films: Characteristics and improvement of properties. In Structure and function of food engineering. IntechOpen.
[23] Tahergorabi, R., Hosseini, S. V., and Jaczynski, J. (2011). Seafood proteins. In Handbook of food proteins (pp. 116-149). Woodhead Publishing.
[24] Gontard, N., Thibault, R., Cuq, B., and Guilbert, S. (1996). Influence of relative humidity and film composition on oxygen and carbon dioxide permeabilities of edible films. J. Agric Food Chem., 44: 1064-1069.
[25] Savary, C., Colonna, P., and Della Valle, G. (1993). Matériauxd'emballage à base d'amidonset de leursdérivés. Ind. Céréales 10: 17-29.
[26] Reichl, S., Borrelli, M., and Geerling, G. (2011). Keratin films for ocular surface reconstruction. Biomaterials, 32(13), 3375-3386.
[27] Sharma, S. and Gupta, A. (2016). Sustainable management of keratin waste biomass: applications and future perspectives. Brazilian Archives of Biology and Technology, 59.
[28] Shi, W. and Dumont, M. J. (2014). Bio-based films from zein, keratin, pea, and rapeseed protein feedstocks. Journal of materials science, 49(5), 1915-1930.
[29] Dou, Y., Zhang, B., He, M., Yin, G., and Cui, Y. (2014). Preparation and physicochemical properties of dialdehyde starch crosslinked feather keratin/pva composite films. Journal of Macromolecular Science, Part A, 51(12), 1009-1015.
[30] Gennadios, A., Weller, C. L., and Testin, R. F. (1993). Modification of physical and barrier properties of edible wheat gluten-based films.
[31] Daniels, R. (1973). Edible coatings and soluble packaging (No. TP451. E3. D36 1973.)
[32] Vázquez, N., Chacón, M., Meana, Á., Menendez-Menendez, Y., Ferrero-Gutierrez, A., Cereijo-Martín, D., ... and Merayo-Lloves, J. (2015). Keratin-chitosan membranes as scaffold for tissue engineering of human cornea. Histology and histopathology, 30(7), 813-821.
[33] Bertini, F., Canetti, M., Patrucco, A., and Zoccola, M. (2013). Wool keratin-polypropylene composites: Properties and thermal degradation. Polymer Degradation and Stability, 98(5), 980-987.
[34] Burnett, R. S. (1951). Soybean protein food products. Soybeans and Soybean Products, 2, 950-952.
[35] Fukushima, D. and Van Buren, J. (1970). Mechanisms of protein insolubilization during the drying of soy milk. Role of disulfide and hydrophobic bonds. Cereal chemistry.
[36] Brandenburg, A. H., Weller, C. L., and Testin, R. F. (1993). Edible films and coatings from soy protein. Journal of food Science, 58(5), 1086-1089.
[37] Kumar, R., Choudhary, V., Mishra, S., Varma, I. K., and Mattiason, B. (2002). Adhesives and plastics based on soy protein products. Industrial Crops and Products, 16(3), 155-172.
[38] Guerrero, P., Retegi, A., Gabilondo, N., and De la Caba, K. (2010). Mechanical and thermal properties of soy protein films processed by casting and compression. Journal of Food Engineering, 100(1), 145-151.
[39] Wolf, W. J. (1970). Soybean proteins. Their functional, chemical, and physical properties. Journal of Agricultural and Food Chemistry, 18(6), 969-976.
[40] Aoki, H., Taneyama, O., Orimo, N., and Kitagawa, I. (1981). Effect of lipophilization of soy protein on its emulsion stabilizing properties. Journal of Food Science, 46(4), 1192-1195.
[41] Jane, J., Lim, S., Paetau, I., Spence, K., and Wang, S. (1994). Biodegradable plastics made from agricultural biopolymers. 92-100.
[42] Gennadios, A., Weller, C. L., and Testin, R. F. (1993). Property modification of edible wheat, gluten-based films. Transactions of the ASAE, 36(2), 465-470.
[43] Cherian, G., Gennadios, A., Weller, C. L., and Chinachoti, P. (1995). Thermomechanical behavior of wheat gluten films: effect of sucrose, glycerin, and sorbitol. Biological Systems Engineering: Papers and Publications, 103.
[44] Aluko, R. E. and McIntosh, T. (2001). Polypeptide profile and functional properties of defatted meals and protein isolates of canola seeds. J Sci Food Agric., 81(4), 391-6.
[45] Guilbert, S., Cuq, B., and Gontard, N. (1997). Recent innovations in edible and/or biodegradable packaging materials. Food Additives & Contaminants, 14(6-7), 741-751
[46] Mujica-Paz, H. and Gontard, N. (1997). Oxygen and carbon dioxide permeability of wheat gluten film: effect of relative humidity and temperature. Journal of Agricultural and Food Chemistry, 45(10), 4101-4105.
[47] Irissin-Mangata, J., Bauduin, G., Boutevin, B., and Gontard, N. (2001). New plasticizers for wheat gluten films. European Polymer Journal, 37(8), 1533-1541.
[48] Lai, H. M. and Padua, G. W. (1997). Properties and microstructure of plasticized zein films. Cereal chemistry, 74(6), 771-775.
[49] Park, H. J., Chinnan, M. S., and Shewfelt, R. L. (1994). Edible corn‐zein film coatings to extend storage life of tomatoes. Journal of food processing and preservation, 18(4), 317-331.
[50] Zhang, H. and Mittal, G. (2010). Biodegradable protein‐based films from plant resources: A review. Environmental progress & sustainable energy, 29(2), 203-220.
[51] Jane, J., Lim, S., Paetau, I., Spence, K., and Wang, S. (1994). Biodegradable plastics made from agricultural biopolymers. 92-100.
[52] Wu, J. and Muir, A. D. (2008). Comparative structural, emulsifying, and biological properties of 2 major canola proteins, cruciferin and napin. J Food Sci., 2008; 73(3): C210-C216.
[53] Kimber, D. S. and McGregor, D. I. (1995). The spicies and their origin, cultivation and world production. In: Kimber DS, McGregor DI, editors. Brassica oilseeds: production and utilization. Wallingford, England: CAB Intl; 1995. Pp. 1-7.
[54] Tan, S. H., Mailer, R. J., Blanchard, C. L., and Agboola, S. O. (2011). Canola proteins for human consumption: extraction, profile, and functional properties. Journal of Food Science, 76(1), R16-R28.
[55] Bamdad, F., Shin, S. H., Suh, J. W., Nimalaratne, C., and Sunwoo, H. (2017). Anti-Inflammatory and antioxidant properties of casein hydrolysate produced using high hydrostatic pressure combined with proteolytic enzymes. Molecules, 22(4), 609.
[56] Sosulski, F. W. and Imafidon, G. I. (1990). Amino acid composition and nitrogen-to-protein conversion factors for animal and plant foods. J. Agric. Food Chem., 38: 1351-1356
[57] Kannan, A., Hettiarachchy, N. S., Marshall, M., Raghavan, S., and Kristinsson, H. (2011). Shrimp shell peptide hydrolysates inhibit human cancer cell proliferation. Journal of the Science of Food and Agriculture, 91(10), 1920-1924.
[58] García, M. C., J. M. Orellana, and M. L. Marina. (2016). Novel Applications of Protein By-products in Biomedicine. In Protein Byproducts. In Protein Byproducts (pp. 193-211). Academic Press.
[59] Uthpala, T. G. G., Munasinghe, H. H., Peiris, L. D. C., and Navaratne, S. B. (2021). Evaluation of antimicrobial potential and phytochemicals in Acmella (A. oleracea) flower pod extracts subjected to different drying techniques. Journal of Food Processing and Preservation, e15570.
[60] Huson, M. G. and Elvin, C. M. (2008). 9 Recombinant Resilin—A Protein-Based Elastomer. Current Topics in Elastomers Research, 255.
[61] Kester, J. J. and Fennema, O. (1986). Edible films and coatings: A review. Food Technol., 40: 47-59.
[62] Sahoo, R., Sanket, A. S., Pany, S., Pati, S., and Samal, S. K. (2020). Latest development of biopolymers based on polysaccharides. In Processing and Development of Polysaccharide-Based Biopolymers for Packaging Applications. Pp. 281-299.