References
[1] John von Neumann and Eugene P Wigner. (1993). Über merkwürdige diskrete eigenwerte. In The Collected Works of Eugene Paul Wigner, pages 291-293. Springer, 1993.
[2] Michael Reed and Barry Simon. (2003). Methods of Modern Mathematical Physics: Analysis of Operators. IV. World Published Corporation, 2003.
[3] Tosio Kato. (1959). Growth properties of solutions of the reduced wave equation with a variable coefficient. Communications on Pure and Applied Mathematics, 12(3): 403-425, August 1959.
[4] F. Odeh. (1965). Note on differential operators with a purely continuous spectrum. Proceedings of the American Mathematical Society, 16(3): 363-363, March 1965.
[5] Joachim Weidmann. (2010). On the continuous spectrum of schrödinger operators. Communications on Pure and Applied Mathematics, 19(1): 107-110, September 2010.
[6] Shmuel Agmon. (1969). Lower bounds for solutions of schrödinger-type equations in unbounded domains. In Proc. Intl. Conference on Functional Analysis and Related Topics, University of Tokyo Press, Tokyo, 1969.
[7] Shmuel Agmon. (1970). Lower bounds for solutions of schrödinger equations. Journal d’Analyse Mathématique, 23(1): 1-25, Dec 1970.
[8] Barry Simon. (1969). On positive eigenvalues of one-body schrödinger operators. Communications on Pure and Applied Mathematics, 22(4): 531-538, July 1969.
[9] B. L. Voronov, D. M. Gitman, and I. V. Tyutin. (2007). The dirac hamiltonian with a superstrong coulomb field. Theoretical and Mathematical Physics, 150(1): 34-72, January 2007.
[10] R. Weder. (1977). Selfadjointness and invariance of the essential spectrum for the klein-gordan equation. Helvetica Physica Acta, 50(1): 105-115, 1977.
[11] R. A. Weder. (1978). Scattering theory for the klein-gordon equation. Journal of Functional Analysis, 27(1): 100-117, 1978.
[12] Hubert Kalf. (1976). The virial theorem in relativistic quantum mechanics. Journal of Functional Analysis, 21(4): 389-396, April 1976.
[13] Bernd Thaller. (1992). The Dirac Equation. Springer Berlin Heidelberg, 1992.
[14] D. M. Gitman, I. V. Tyutin, and B. L. Voronov. (2012). Self-adjoint Extensions in Quantum Mechanics. Birkhäuser Boston, 2012.
[15] César R. de Oliveira. (2009). Intermediate Spectral Theory and Quantum Dynamics. Birkhäuser Basel, 2009.
[16] Federico Capasso, Carlo Sirtori, Jerome Faist, Deborah L. Sivco, Sung-Nee G. Chu, and Alfred Y. Cho. (1992). Observation of an electronic bound state above a potential well. Nature, 358(6387): 565-567, August 1992.
[17] Martin Schechter. (1971). Spectra of partial differential operators. Technical report, Belfer Graduate School of Science New York Dept of Mathematics, 1971.
[18] Lars-Erik Lundberg. (1973). Spectral and scattering theory for the klein-gordon equation. Communications in Mathematical Physics, 31(3): 243-257, September 1973.
[19] Tosio Kato. (1995). Perturbation Theory for Linear Operators. Springer Berlin Heidelberg, 1995.
[20] Rupert L. Frank and Barry Simon. (2017). Eigenvalue Bounds for Schrödinger Operators with Complex Potentials. II, J. Specr. Theory, 7 (2017), 633-658.
[21] A Cayley-Hamiltonian Theorem for Periodic Finite Band Matrices, Functional analysis and operator theory for quantum physics, ed. J. Dittrich, H. Kovařík, and A. Laptev, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich (2017), 525-529.
[22] Carvalho, Silas L., De Oliveira, CÉSar R. (2021). Generic Zero-Hausdorff and One-Packing Spectral Measures. Journal of Mathematical Physics, V. 62, P. 013502-1-013502-8, 2021.
[23] de Oliveira, César R., Rocha, Vinínius L. (2021). Dirac cones for graph models of multilayer AA-stacked graphene Sheets. Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences, V. 0, P. 371-384, 2021.
[24] Aloisio, M., Carvalho, S. L., de Oliveira, César R. (2020). Category Theorems for Schrödinger Semigroups. Zeit-schrift Fur Analysis Und Ihre Anwendungen, V. 39, P. 421-431, 2020.