magazinelogo

Journal of Applied Mathematics and Computation

ISSN Print: 2576-0645 Downloads: 126133 Total View: 1656029
Frequency: quarterly ISSN Online: 2576-0653 CODEN: JAMCEZ
Email: jamc@hillpublisher.com
Article http://dx.doi.org/10.26855/jamc.2021.09.001

Absence of Eigenvalues in the Continuous Spectrum for Klein-Gordon Operators

R. Ferreira1, F. N. Lima2,*, A. S. Ribeiro2

1Universidade de São Paulo (USP), São Paulo, SP, 05508-090, Brazil.

2GTMCOQ, Instituto Federal do Piauí (IFPI), São Raimundo Nonato, Piauí, 64770-000, Brazil.

*Corresponding author: F. N. Lima

Published: July 6,2021

Abstract

We construct the one-dimensional analogous of von-Neumann Wigner potential to the relativistic Klein-Gordon operator, in which is defined taking asymptotic mathematical rules in order to obtain existence conditions of eigenvalues embedded in the continuous spectrum. Using our constructed potential, we provide an explicit and analytical example of the Klein-Gordon operator with positive eigen-values embedded in the so called relativistic “continuum region”. This result is analogous to the found in non-relativistic case for Schrodinger’s operator. Even so, in this not standard example, we present the region of the “continuum” where those eigenvalues cannot occur. Besides, the absence of eigenvalues in the continuous spectrum for Klein-Gordon operators is proven to a broad general potential classes, including the minimally coupled electric Coulomb potential. Considering known techniques available in literature for Schrodinger operators, we demonstrate an expression for Klein-Gordon operator written in Schrodinger’s form, whereby is determined the mathematical spectrum region of absence of eigenvalues.

References

[1] John von Neumann and Eugene P Wigner. (1993). Über merkwürdige diskrete eigenwerte. In The Collected Works of Eugene Paul Wigner, pages 291-293. Springer, 1993.

[2] Michael Reed and Barry Simon. (2003). Methods of Modern Mathematical Physics: Analysis of Operators. IV. World Published Corporation, 2003.

[3] Tosio Kato. (1959). Growth properties of solutions of the reduced wave equation with a variable coefficient. Communications on Pure and Applied Mathematics, 12(3): 403-425, August 1959.

[4] F. Odeh. (1965). Note on differential operators with a purely continuous spectrum. Proceedings of the American Mathematical Society, 16(3): 363-363, March 1965.

[5] Joachim Weidmann. (2010). On the continuous spectrum of schrödinger operators. Communications on Pure and Applied Mathematics, 19(1): 107-110, September 2010.

[6] Shmuel Agmon. (1969). Lower bounds for solutions of schrödinger-type equations in unbounded domains. In Proc. Intl. Conference on Functional Analysis and Related Topics, University of Tokyo Press, Tokyo, 1969.

[7] Shmuel Agmon. (1970). Lower bounds for solutions of schrödinger equations. Journal d’Analyse Mathématique, 23(1): 1-25, Dec 1970.

[8] Barry Simon. (1969). On positive eigenvalues of one-body schrödinger operators. Communications on Pure and Applied Mathematics, 22(4): 531-538, July 1969.

[9] B. L. Voronov, D. M. Gitman, and I. V. Tyutin. (2007). The dirac hamiltonian with a superstrong coulomb field. Theoretical and Mathematical Physics, 150(1): 34-72, January 2007.

[10] R. Weder. (1977). Selfadjointness and invariance of the essential spectrum for the klein-gordan equation. Helvetica Physica Acta, 50(1): 105-115, 1977.

[11] R. A. Weder. (1978). Scattering theory for the klein-gordon equation. Journal of Functional Analysis, 27(1): 100-117, 1978.

[12] Hubert Kalf. (1976). The virial theorem in relativistic quantum mechanics. Journal of Functional Analysis, 21(4): 389-396, April 1976.

[13] Bernd Thaller. (1992). The Dirac Equation. Springer Berlin Heidelberg, 1992.

[14] D. M. Gitman, I. V. Tyutin, and B. L. Voronov. (2012). Self-adjoint Extensions in Quantum Mechanics. Birkhäuser Boston, 2012.

[15] César R. de Oliveira. (2009). Intermediate Spectral Theory and Quantum Dynamics. Birkhäuser Basel, 2009.

[16] Federico Capasso, Carlo Sirtori, Jerome Faist, Deborah L. Sivco, Sung-Nee G. Chu, and Alfred Y. Cho. (1992). Observation of an electronic bound state above a potential well. Nature, 358(6387): 565-567, August 1992.

[17] Martin Schechter. (1971). Spectra of partial differential operators. Technical report, Belfer Graduate School of Science New York Dept of Mathematics, 1971.

[18] Lars-Erik Lundberg. (1973). Spectral and scattering theory for the klein-gordon equation. Communications in Mathematical Physics, 31(3): 243-257, September 1973.

[19] Tosio Kato. (1995). Perturbation Theory for Linear Operators. Springer Berlin Heidelberg, 1995.

[20] Rupert L. Frank and Barry Simon. (2017). Eigenvalue Bounds for Schrödinger Operators with Complex Potentials. II, J. Specr. Theory, 7 (2017), 633-658.

[21] A Cayley-Hamiltonian Theorem for Periodic Finite Band Matrices, Functional analysis and operator theory for quantum physics, ed. J. Dittrich, H. Kovařík, and A. Laptev, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich (2017),  525-529.

[22] Carvalho, Silas L., De Oliveira, CÉSar R. (2021). Generic Zero-Hausdorff and One-Packing Spectral Measures. Journal of Mathematical Physics, V. 62, P. 013502-1-013502-8, 2021.

[23] de Oliveira, César R., Rocha, Vinínius L. (2021). Dirac cones for graph models of multilayer AA-stacked graphene Sheets. Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences, V. 0, P. 371-384, 2021.

[24] Aloisio, M., Carvalho, S. L., de Oliveira, César R. (2020). Category Theorems for Schrödinger Semigroups. Zeit-schrift Fur Analysis Und Ihre Anwendungen, V. 39, P. 421-431, 2020.

How to cite this paper

Absence of Eigenvalues in the Continuous Spectrum for Klein-Gordon Operators

How to cite this paper: R. Ferreira, F. N. Lima, A. S. Ribeiro. (2021) Absence of Eigenvalues in the Continuous Spectrum for Klein-Gordon Operators. Journal of Applied Mathematics and Computation5(3), 145-153.

DOI: https://dx.doi.org/10.26855/jamc.2021.09.001