magazinelogo

International Journal of Food Science and Agriculture

ISSN Print: 2578-3467 Downloads: 197390 Total View: 2848903
Frequency: quarterly ISSN Online: 2578-3475 CODEN: IJFSJ3
Email: ijfsa@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/ijfsa.2021.09.014

Genetic Diversity Assessment through Cluster and Principal Component Analysis in Potato (Solanum tuberosum L.) Genotypes for Processing Traits

Ebrahim Seid1,*, Wassu Mohammed2, Tesfaye Abebe1

1Ethiopia Institute of Agricultural Research (EIAR), Holetta Agricultural Research Centre (HARC), P.O. Box: 2003, Addis Ababa, Ethiopia. 

2Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia.

*Corresponding author: Ebrahim Seid

Published: August 16,2021

Abstract

Potato (Solanum tuberosum L.) is the third most important food crop in the world in terms of consumption after rice and wheat. It can be used as fresh products and commercially processed foods such as French fries and chips. In Ethiopia, the released varieties have not met the consumers’ demand for processing purpose. Therefore, the objective of this study was to estimate the magnitude of genetic distance and to identify the major traits contributing for processing quality traits among the studied genotypes by using cluster and principal component analysis. The experiment was conducted during the main rainy season of 2017 at Holetta, Ethiopia. A total of 24 potato genotypes were evaluated for 23 quantitative traits in randomized complete block design with three replications. The genetic distances among the 24 potato genotypes ranged from 2.73 to 10.94 and the genotypes were grouped into six clusters based on quantitative traits. Cluster II consisted of 33.33%, Cluster I contained 29.17%, cluster III had 16.67% and cluster IV had 12.50% potato genotypes, while cluster V and VI contained each one (4.17%) genotype. The first six principal components accounted for 88.20% for the observed variations among 24 potato genotypes. Of these, the first, the second and the third principal components constituted 34.30%, 20.70% and 12.00% of the variation, respectively. In conclusion, according to cluster mean and principal component analysis cluster II and cluster VI contained the best genotypes for highest total tuber yield, marketable tuber yield, specific gravity of tuber, dry matter content and total starch content traits and could be used as parents in crossing program targeted at developing processing type varieties.

References

[1] Birch, P. R., Bryan, G., Fenton, B., Gilroy, E. M., Hein, I., Jones, J. T., Prashar, A., Taylor, M. A., Torrance, L., and Toth, I. K. (2012). Crops that feed the world 8: Potato: are the trends of increased global production sustainable?. Food Security, 4(4): 477-508.

[2] Hancock, R. D., Morris, W. L., Ducreux, L. J., Morris, J. A., Usman, M., Verrall, S. R., Fuller, J., Simpson, C. G., Zhang, R., Hedley, P. E., and Taylor, M. A. (2014). Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell and Environment, 37(2): 439-450.

[3] Huamán, Z. and Spooner, D. M. (2002). Reclassification of landrace populations of cultivated potatoes (Solanumsect. Petota). American Journal of Botany, 89(6): 947-965.

[4] Ali, Y., Atta, B. M., Akhter, J., Monneveux, P., and Lateef, Z. (2008). Genetic variability, association and diversity studies in wheat (Triticum aestivum L.) germplasm. Pakistan Journal of Biotechnology, 40(5): 2087-2097.

[5] Bhandari, H. R., Bhanu, A. N., Srivastava, K., Singh, M. N., and Shreya, I. (2017). Assessment of Genetic Diversity in Crop Plants: An Overview. Advance Plants Agricultural Research, 7(3): 00255.

[6] Akkale, C., Yildirim, Z., Yildirim, M. B., Canan, K. A. Y. A., Ozturk, G., and Tanyolac, B. (2010). Assessing genetic diversity of some potato (Solanum tuberosum L.) genotypes grown in Turkey using the AFLP marker technique. Turkish Journal of Field Crops, 15(1), 73-78.

[7] Das, A. B., Mohanty, I. C., Mahapatra, D., Mohanty, S., and Ray, A. (2010). Genetic variation of Indian potato (Solanum tuberosum L.) genotypes using chromosomal and RAPD markers. Crop Breeding and Applied Biotechnology, 10(3), 238-246.

[8] Khan, M. F., Tabassum, N., Latif, A., Khaliq, A., and Malik, M. (2013). Morphological characterization of potato (Solanum tuberosum L.) germplasm under rainfed environment. African Journal of Biotechnology, 12(21): 3214-3223.

[9] Salimi, H., Bahar, M., Mirlohi, A., and Talebi, M. (2016). Assessment of the genetic diversity among potato cultivars from different geographical areas using the genomic and EST microsatellites. Iranian Journal of Biotechnology, 14(4), 270.

[10] Haydar, A., Ahmed, M. B., Hannan, M. M., Razvy, M. A., Mandal, M. A., Salahin, M., Karim, R., and Hossain, M. (2007). Analysis of genetic diversity in some potato varieties grown in Bangladesh. Middle-East Journal of Scientific Research, 2(3-4): 143-145.

[11] Ahmadizadeh, M., Shahbazi, H., Valizadeh, M., and Zaefizadeh, M. (2011). Genetic diversity of durum wheat landraces using multivariate analysis under normal irrigation and drought stress conditions. African Journal of Agricultural Research, 6(10): 2294-2302.

[12] Hailegiorgis, D., Mesfin, M., and Genet, T. (2011). Genetic divergence analysis on some bread wheat genotypes grown in Ethiopia. Journal of Central European Agriculture, 12(2): 344-352.

[13] Bayram, M. (2005). Determination of the sphericity of granular food materials. Journal of food engineering, 68(3): 385-390.

[14] Baryeh, E. A. (2001). Physical properties of bambara groundnuts. Journal of Food Engineering, 47(4): 321-326.

[15] Kleinkopf, G. E., Westermann, D. T., Wille, M. J., and Kleinschmidt, G. D. (1987). Specific gravity of Russet Burbank potatoes. American Potato Journal, 64(11): 579-587.

[16] Porras, E., Burgos, G., Sosa, P., and Felde, T. Z. (2014). Procedures for sampling and sample preparation of sweetpotato roots and potato tubers for mineral analysis. Lima, Peru. International Potato Center (CIP), Global Program Genetics and Crop Improvement. 

[17] Hassell, R. L., Kelly, D. M., Wittmeyer, E. C., Wallace, C., Grassbaugh, E. M., Elliott, J. Y., and Wenneker, G. L. (1997). Ohio Potato Cultivar Trials. Ohio State University Horticulture Series.

[18] Sneath, P. H. and Sokal, R. R. (1973). Numerical Taxonomy. Freeman and Company, San Francisco, USA.

[19] Kumar, V., Kato, N., Urabe, Y., Takahashi, A., Muroyama, R., Hosono, N., and Matsuda, K. (2011). Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. Nature Genetics, 43(5), 455-458.

[20] Tesfaye, A., Shermarland, W., and Thunya, T. (2013). Analysis of the phenotypic diversity within cultivated potato varieties in Ethiopia at three locations. Agriculture and Natural Resources, 47(6): 803-817.

[21] Mohammed, W. (2014). Genetic variability in potato (Solanum tuberosum L.) genotypes for late blight [Phytophthora infestans (Mont.) de Bary] resistance and yield at Haramaya, Eastern Ethiopia. East African Journal of Sciences, 8(1): 13-28.

[22] Iqbal, N., Erum, S., Azim, R., Shakil, M., and Khan, M. F. (2018). Estimation of phenotypic diversity among locally available potato germplasm. International Journal of Biosciences, 13(1), 10-17.

[23] Panigrahi, K. K., Sarkar, K. K., Baisakh, B., and Mohanty, A. (2014). Assessment of genetic divergence in potato (Solanum tuberosum L.) genotypes for yield and yield attributing traits. International Journal of Agriculture, Environment and Biotechnology, 7(2): 247-254.

[24] Carputo, D., Alioto, D., Aversano, R., Garramone, R., Miraglia, V., Villano, C., and Frusciante, L. (2013). Genetic diversity among potato species as revealed by phenotypic resistances and SSR markers. Plant Genetic Resources, 11(2), 131-139.

[25] Abebe, G. K., Bijman, J., Pascucci, S., and Omta, O. (2013). Adoption of improved potato varieties in Ethiopia: The role of agricultural knowledge and innovation system and smallholder farmers’ quality assessment. Agricultural Systems, 122: 22-32.

[26] Datta, S., Das, R., and Singh, D. (2015). Evaluation of genetic diversity for yield and quality parameters of different potato (Solanum tuberosum L.) germplasm. Journal of Applied and Natural Science, 7(1): 235-241.

[27] Rangare, S. B. and Rangare, N. R. (2017). Classificatory analysis of potato (Solanum tuberosum L.) Genotypes for yield and yield attributing traits. The Pharma Innovation, 6(9): 94-102.

[28] Arslanoglu, F., Aytac, S., and Oner, K. (2011). Morphological characterization of the local potato (Solanum tuberosum L.) genotypes collected from the Eastern Black Sea region of Turkey. African Journal of Biotechnology, 10(6): 922-932.

[29] Dangi, R., Kumar, A., and Khar, A. (2018). Genetic variability, heritability, and diversity analysis studies in short day tropical onion (Allium cepa L.). Indian Journal of Agricultural Sciences, 88: 948-957.

[30] Nickmanesh, L. and Hassanpanah, D. (2014). Evaluation of genetic diversity for agronomic traits in 127 potato hybrids with using multivariate statistical methods. Indian Journal of Fundamental and Applied Life Sciences, 4(2): 502-507.

[31] Khlestkin, V. K., Rozanova, I. V., Efimov, V. M., and Khlestkina, E. K. (2019). Starch phosphorylation associated SNPs found by genome-wide association studies in the potato (Solanum tuberosum L.). BMC Genetics, 20(1), p. 29.

[32] Rymuza, K. (2015). Multi-trait evaluation of value for cultivation and use of early maturing edible potato cultivars registered in Poland. Journal of Ecological Engineering, 16(1): 50-56.

How to cite this paper

Genetic Diversity Assessment through Cluster and Principal Component Analysis in Potato (Solanum tuberosum L.) Genotypes for Processing Traits

How to cite this paper: Ebrahim Seid, Wassu Mohammed, Tesfaye Abebe. (2021) Genetic Diversity Assessment through Cluster and Principal Component Analysis in Potato (Solanum tuberosum L.) Genotypes for Processing TraitsInternational Journal of Food Science and Agriculture5(3), 440-447.

DOI: http://dx.doi.org/10.26855/ijfsa.2021.09.014