Rohit Kumar1, Amritanjali1, Soubhik Chakraborty2,*
1Depatment of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India.
2Department of Mathematics, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India.
*Corresponding author: Soubhik Chakraborty
References
[1] A. Schoor. (1982). “Fast Algorithm for Sparse Matrix Multiplication”. Information Processing Letters, 15(1982), pp. 87-89.
[2] S. Chakraborty and S. K. Sourabh. (2007). “On why an algorithmic time complexity measure can be system invariant rather than system independent”. Applied Mathematics and Computation, Volume 190, Issue 1, 1 July 2007, pp. 195-204.
[3] A. Kumari, N. K. Singh, and S. Chakraborty. (2015). “A Statistical Comperative Study of Some Sorting Algorithms”. International Journal in Foundations of Computer Science & Technology (IJFCST),Vol. 5, No. 4, pp. 21-29, July 2015.
[4] S. K. Panigrahi, S. Chakraborty, and Jibitesh Mishra. (2012). “Statistical Bond of Bubble Sort Algorithm in Serial and Parallel Computations”. International Journal of Computer Science and Network (IJCSN), Volume 1, Issue 1, pp. 2277-5420, February 2012.
[5] https://www.minitab.com/en-us/support/documentation/.
[6] E. Horowitz, S. Sahni, and S. Rajsekaran. (2008). “Fundamentals of Computer Algorithms”, Universities Press, 2nd Edition, 2008, pp. 495-499.
[7] S. K. Panigrahi, Soubhik Chakraborty, Jibitesh Mishra. (2014). “Statistical analysis of Parallel Matrix Multiplication in SIMD model using ‘p’,‘p2’,‘p3’ processor’s with different interconnection network”. 5th International Conference—Confluence The Next Generation Information Technology Summit (Confluence), IEEE Xplore, 978-1-4799-4236-7/14, pp. 858-865, September 2014.
[8] S. K. Panigrahi and S. Chakraborty. (2014). “Statistical Definition of an Algorithm in PRAM model & Analysis of 2x2 Matrix Multiplication in 2n Processors Using Different Networks”. IEEE International Advanced Computing Conference, 978-1-4799-2572, pp. 717-724, February 2014.
[9] S. Pacheco. (2011). “An Introduction to Parallel Programming”, Elsevier Inc., 2011.
[10] S. Aldea, A. Estebanez, et al. (2015). “An OpenMP Extension that Supports Thread-Level Speculation”, IEEE Transactions on Parallel and Distributed Systems, ISSN: 1045-9219, pp. 78-91, January 2015.
[11] G. Ballard, A. R. Benson, A. Druinsky, B. Lipshitz, and O. Schwartz. (2016). Improving the numerical stability of fast matrix multiplication. SIAM Journal on Matrix Analysis and Applications, 37(4), 1382-1418, 2016.
[12] G. Beniamini and O. Schwartz. (2019). Faster matrix multiplication via sparse decomposition. In Proceedings of the 31st ACM on Symposium on Parallelism in Algorithms and Architectures. ACM, 11-22, 2019.
[13] G. Bilardi and L. De Stefani. (2017). The I/O complexity of Strassen’s matrix multiplication with recomputation. In Workshop on Algorithms and Data Structures. Springer, 181-192, 2017.
[14] E. Karstadt and O. Schwartz. (2020). Matrix Multiplication, A Little Faster, Journal of the ACM, Vol. 67, Issue 1, 1-31, April 2020.