References
[1] Schlichting, H. (1968). Boundary Layer Theory, McGraw-Hill, New York.
[2] Wang, C. Y. (1989). Exact solutions of the unsteady Navier-Stokes equations, Appl. Mech. Rev., 42(11S), S269-S282. https://doi.org/10.1115/1.3152400.
[3] Erdogan, M. E. (2002). On the unsteady unidirectional flows generated by impulsive motion of a boundary or sudden application of a pressure gradient, Int. J. Non Linear Mech., 37, 1091-1106. https://doi.org/10.1016/S0020-7462(01)00035-X.
[4] Erdogan, M. E. and Imrak, C. E. (2007). On some unsteady flows of a non-Newtonian fluid. Appl. Math. Model., 31, 170-180. https://doi.org/10.1016/j.apm.2005.08.019.
[5] Mendiburu, A. A., Carrocci, L. R., and Carvalho, J. A. (2009). Analytical solution for transient one-dimensional Couette flow considering constant and time-dependent pressure gradients, Eng. térm., 8(2), 92-98. http://dx.doi.org/10.5380/reterm.v8i2.61921.
[6] Singha, K. D. and Choudhary, R. C. (1965). Flow of viscous incompressible fluid between two parallel plates, one in uniform motion and the other at rest, with suction at the stationary plate, Proc. Indian Acad. Sci., 61(5), 308-318.
[7] Kiema, D. W., Manyonge, W. A., Bitok, J. K., Adenyah, R. K., and Barasa, J. S. (2015). On the steady MHD Couette flow between two infinite parallel plates in a uniform transverse magnetic field, J. Appl. Math. Bioinf., 5(1), 87-99. https://repository.maseno.ac.ke/handle/123456789/1785.
[8] Onyango, E. R., Kinyanjui, M. N., and Uppal, S. M. (2015). Unsteady hydromagnetic Couette flow with magnetic field lines fixed relative to the moving upper plate, Am. J. Appl. Math., 3(5), 206-214. doi: 10.11648/j.ajam.20150305.11.
[9] Al-Hadhrami, A. K., Elliot, L., Ingham, D. B., and Wen, X. (2003). Flow through horizontal channels of porous materials, Int. J. Energy Res., 27(10), 875-889. https://doi.org/10.1002/er.923.
[10] Dash, G. C. and Ojha, K. L. (2018). Viscoelastic hydromagnetic-flow between two porous parallel plates in the presence of a sinusoidal pressure gradient. Alex. Eng. J., 57(4), 3463-3471. https://doi.org/10.1016/j.aej.2017.12.011.
[11] Fetecau, C. and Narahari, M. (2020). General solutions for hydromagnetic flow of viscous fluids between horizontal parallel plates through porous medium. J. Eng. Mech., 146(6), 04020053. DOI: 10.1061/(ASCE)EM.1943-7889.0001785.
[12] Javaid, Maria, Imran, M., Fetecau, C., and Vieru, D. (2020). General solutions for the mixed boundary value problem associated to hydromagnetic flows of viscous fluid between symmetrically heated parallel plates. Therm. Sci., 24(2B), 1389-1405. https://doi.org/10.2298/TSCI190608384J.
[13] Ting, T. W. (1965) Certain non-steady flows of second grade fluids. Arch. Ration. Mech. Anal., 14, 1-26. https://doi.org/10.1007/BF00250690.
[14] Rajagopal, K. R. (1982). A note on unsteady unidirectional flows of a non-Newtonian fluid. Int. J. Non Linear Mech. 17(5/6), 369-373. https://doi.org/10.1016/0020-7462(82)90006-3.
[15] Hayat, T., Khan, I., Ellahi, R., and Fetecau, C. (2008). Some MHD flows of a second grade fluid through the porous medium, Journal of Porous Media, 11(4), 389-400. DOI: 10.1615/JPorMedia.v11.i4.50.
[16] Imran, M., Tahir, M., Nazar, M., and Kamran, M. (2015). Some Couette flows of a second grade fluid due to tangential stresses, Sci. Int., 27(3), 1809-1814.
[17] Ali, F., Khan, M., and Gohar, M. (2021). Magnetohydrodynamic Fluctuating Free Convection Flow of Second-Grade Fluid Flow in a Porous Medium, Math. Probl. Eng., Volume 2021, Article ID 6648281, 13 page. https://doi.org/10.1155/2021/6648281.
[18] Rivlin, R. S. and Ericksen, J. L. (1955). Stress deformation relation for isotropic materials, J. Ration. Mech. Anal., 4, 323-425.
[19] Dunn, J. E. and Fosdick, R. L. (1974). Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade, Arch. Ration. Mech. Anal., 56, 191-252. https://doi.org/10.1007/BF00280970.
[20] Cramer, K. R. and Pai, S. I. (1973). Magnetofluid dynamics for engineers and applied physicists. McGraw-Hill, New York.
[21] Fetecau, C., Ellahi, R., Khan, M., and Shah, N. A. (2018). Combined porous and magnetic effects on some fundamental motions of Newtonian fluids over an infinite plate. J. Porous Media, 21(7), 589-605. DOI: 10.1615/JPorMedia.v21.i7.20.
[22] Fetecau, C. and Vieru, D. (2020). Exact solutions for unsteady motion between parallel plates of some fluids with power-law dependence of viscosity on the pressure, Applications in Engineering Science, 1, 100003. https://doi.org/10.1016/j.apples.2020.100003.
[23] Rajagopal, K. R. (2013). A new development and interpretation of the Navier-Stokes fluid which reveals why the Stokes assumption is inapt. Int. J. Non Linear Mech., 50, 141-151. https://doi.org/10.1016/j.ijnonlinmec. 2012.10.007.