Hill Publishing Group | contact@hillpublisher.com

Hill Publishing Group

Location:Home / Journals / International Journal of Clinical and Experimental Medicine Research /

DOI:http://dx.doi.org/10.26855/ijcemr.2022.01.001

Role of Silicone-Based Nanodevices in Nanotheranostics

Date: November 2,2021 |Hits: 393 Download PDF How to cite this paper

Nida Tabassum Khan

Department of Biotechnology, Faculty of Life Sciences & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Takatu Campus, Airport Road, Quetta, Balochistan, Pakistan.

*Corresponding author: Nida Tabassum Khan

Abstract

Nanoparticles are very tiny units with dimension measured in nanometers, employed in medical nanodevices to interact with cells and tissues, in order to perform specific tasks such as disease imaging, diagnostics and therapeutics.  Moreover, nanodevices provide a good resolution image of the cells and tissues.  Thus, they are very helpful in diagnosis and equally while performing surgeries.  Among various classes of nanomaterials, silicon-based nanoparticles are referred as silicon nanocrystals are the most popular materials utilized in nanodevices for diagnostic and therapeutic purposes.  With the fast improvement of silicon nanotechnology, silicon nanostructures/nanohybrids with alluring properties have been already produced for bioimaging and biosensing applications in biomedical field.  Being employed in nanodevices, it is one of the recent advancements of nanomedicine.  Silicone based nanodevices take advantage of silicone nanomaterial innovative capacities such as electronic, chemical, and optical properties so to be utilized in heterogeneous areas like monitoring, labelling, imaging, drug delivery, diagnostics, therapy, and surprisingly in nanosurgery and lab on chip techniques, etc.,  in order to improve health related problems more effectively and accurately.

References

[1] Hamouda, I. M. (2012). Current perspectives of nanoparticles in medical and dental biomaterials. Journal of biomedical research, 26(3), 143-151.

[2] Martinez-Gutierrez, F., Olive, P. L., Banuelos, A., Orrantia, E., Nino, N., Sanchez, E. M., ... and Av-Gay, Y. (2010). Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 6(5), 681-688.

[3] Monteiro, D. R., Gorup, L. F., Takamiya, A. S., Ruvollo-Filho, A. C., de Camargo, E. R., and Barbosa, D. B. (2009). The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 34(2), 103-110.

[4] Mantri, S. S. and Mantri, S. P. (2013). The nano era in dentistry. Journal of natural science, biology, and medicine, 4(1), 39.

[5] Kumar, V. and Lee, D. J. (2017). Studies of nanocomposites based on carbon nanomaterials and RTV silicone rubber. Journal of Applied Polymer Science, 134(4).

[6] Zygo, M., Mrlik, M., Ilcikova, M., Hrabalikova, M., Osicka, J., Cvek, M., ... and Mosnáček, J. (2020). Effect of structure of polymers grafted from graphene oxide on the compatibility of particles with a silicone-based environment and the stimuli-responsive capabilities of their composites. Nanomaterials, 10(3), 591.

[7] Zhang, Y. L., Zang, C. G., and Jiao, Q. J. (2020). Electrical, thermal, and mechanical properties of silicone foam composites filled with carbon‐based nanofillers. Journal of Applied Polymer Science, 137(39), 49191.

[8] Teo, B. K. and Sun, X. H. (2007). Silicon-based low-dimensional nanomaterials and nanodevices. Chemical Reviews, 107(5), 1454-1532.

[9] Wan, Y., Sha, J., Chen, B., Fang, Y., Wang, Z., and Wang, Y. (2009). Nanodevices based on silicon nanowires. Recent patents on nanotechnology, 3(1), 1-9.

[10] Oda, S. (2003). NeoSilicon materials and silicon nanodevices. Materials Science and Engineering: B, 101(1-3), 19-23.

[11] Credo, G. M., Mason, M. D., and Buratto, S. K. (1999). External quantum efficiency of single porous silicon nanoparticles. Applied Physics Letters, 74(14), 1978-1980.

[12] Russo, L., Colangelo, F., Cioffi, R., Rea, I., and Stefano, L. D. (2011). A mechanochemical approach to porous silicon nano-particles fabrication. Materials, 4(6), 1023-1033.

[13] Santos, H. A., Mäkilä, E., Airaksinen, A. J., Bimbo, L. M., and Hirvonen, J. (2014). Porous silicon nanoparticles for nanomedicine: preparation and biomedical applications. Nanomedicine, 9(4), 535-554.

[14] Bley, R. A., Kauzlarich, S. M., Davis, J. E., and Lee, H. W. (1996). Characterization of silicon nanoparticles prepared from porous silicon. Chemistry of materials, 8(8), 1881-1888.

[15] Arul Dhas, N., Raj, C. P., and Gedanken, A. (1998). Preparation of luminescent silicon nanoparticles: a novel sonochemical approach. Chemistry of materials, 10(11), 3278-3281.

[16] Chen, Q., Zhu, R., Fu, H., Ma, L., Zhu, J., He, H., and Deng, Y. (2018). From natural clay minerals to porous silicon nanoparticles. Microporous and Mesoporous Materials, 260, 76-83.

[17] Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., ... and Wang, S. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 313-327.

[18] Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., and Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590-2605.

[19] Torney, F., Trewyn, B. G., Lin, V. S. Y., and Wang, K. (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology, 2(5), 295-300.

[20] Jafari, S., Derakhshankhah, H., Alaei, L., Fattahi, A., Varnamkhasti, B. S., and Saboury, A. A. (2019). Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomedicine & Pharmacotherapy, 109, 1100-1111.

[21] Vallet-Regí, M., Colilla, M., Izquierdo-Barba, I., and Manzano, M. (2018). Mesoporous silica nanoparticles for drug delivery: Current insights. Molecules, 23(1), 47.

[22] Zhou, Y., Quan, G., Wu, Q., Zhang, X., Niu, B., Wu, B., ... and Wu, C. (2018). Mesoporous silica nanoparticles for drug and gene delivery. Acta pharmaceutica sinica B, 8(2), 165-177.

[23] Park, M. S., Wang, G. X., Kang, Y. M., Kim, S. Y., Liu, H. K., and Dou, S. X. (2007). Mesoporous organo-silica nanoarray for energy storage media. Electrochemistry communications, 9(1), 71-75.

[24] Liang, Y. and Anwander, R. (2007). Disilazane functionalization of large-pore hybrid periodic mesoporous organosilicas. Journal of Materials Chemistry, 17(24), 2506-2516.

[25] Asefa, T., MacLachlan, M. J., Coombs, N., and Ozin, G. A. (1999). Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature, 402(6764), 867-871.

[26] van der Graaff, W. N., Olvera, K. G., Pidko, E. A., and Hensen, E. J. (2014). Stability and catalytic properties of porous acidic (organo) silica materials for conversion of carbohydrates. Journal of Molecular Catalysis A: Chemical, 388, 81-89.

[27] Esquivel Merino, M. D., Van Der Voort, P., and Romero-Salguero, F. (2014). Designing advanced functional periodic mesoporous organosilicas for biomedical applications. AIMS Materials Science, 1(1), 70-86.

[28] Chinnathambi, S. and Tamanoi, F. (2020). Recent development to explore the use of biodegradable periodic mesoporous organosilica (BPMO) nanomaterials for cancer therapy. Pharmaceutics, 12(9), 890.

[29] Croissant, J. G., Cattoën, X., Man, M. W. C., Durand, J. O., and Khashab, N. M. (2015). Syntheses and applications of periodic mesoporous organosilica nanoparticles. Nanoscale, 7(48), 20318-20334.

[30] Hu, Y., Fine, D. H., Tasciotti, E., Bouamrani, A., and Ferrari, M. (2011). Nanodevices in diagnostics. Wiley interdisciplinary reviews: Nanomedicine and Nanobiotechnology, 3(1), 11-32.

[31] Chau, R., Doyle, B., Datta, S., Kavalieros, J., and Zhang, K. (2007). Integrated nanoelectronics for the future. Nature materials, 6(11), 810-812.

[32] Lu, W. and Lieber, C. M. (2010). Nanoelectronics from the bottom up. Nanoscience and Technology: A Collection of Reviews from Nature Journals, 137-146.

[33] Schoning, M. J. and Poghossian, A. (2008, October). Silicon-based field-effect devices for (bio-) chemical sensing. In 2008 International Conference on Advanced Semiconductor Devices and Microsystems (pp. 31-38). IEEE.

[34] Jones, W. K. (2008). Bio/Nano Electronic Devices and Sensors. Florida International Univ Miami Div of Sponsored Research and Training.

[35] Mu, L., Chang, Y. E., Sawtelle, S. D., Wipf, M., Duan, X., and Reed, M. A. (2015). Silicon nanowire field-effect transistors—A versatile class of potentiometric nanobiosensors. Ieee Access, 3, 287-302.

[36] Yang, F. and Zhang, G. J. (2014). Silicon nanowire-transistor biosensor for study of molecule-molecule interactions. Reviews in Analytical Chemistry, 33(2), 95-110.

How to cite this paper

Role of Silicone-Based Nanodevices in Nanotheranostics

How to cite this paper: Nida Tabassum Khan. (2022) Role of Silicone-Based Nanodevices in Nanotheranostics. International Journal of Clinical and Experimental Medicine Research6(1), 1-4.

DOI: http://dx.doi.org/10.26855/ijcemr.2022.01.001

Volumes & Issues

Free HPG Newsletters

Add your e-mail address to receive free newsletters from Hill Publishing Group.

Contact us

Hill Publishing Group

8825 53rd Ave

Elmhurst, NY 11373, USA

E-mail: contact@hillpublisher.com

Copyright © 2019 Hill Publishing Group Inc. All Rights Reserved.