Abdul Hamid Ganie1,2,*, Mashael M. AlBaidani3
1Department of Computer Science and Engineering, Birla Institute of Technology, Mesra-835215, Jharkhand, India.
2Department of Mathematics, Birla Institute of Technology, Mesra-835215, Jharkhand, India.
3IT Services, MECON Limited, Ranchi-834002, Jharkhand, India.
*Corresponding author: Abdul Hamid Ganie
References
[1] I. J. Maddox. (1967). Spaces of strongly summable sequences. Quart. J. Math. Oxford, 18(2), 345-355.
[2] B. Altay and F. Basar. (2003). On the space of sequences of p-bounded variation and related matrix mappings. Ukarnian Math. J., 1(1), 136-147.
[3] D. Fathima and A. H. Ganie. (2021). On some new scenario of Delta-spaces. Journal of Nonlinear Sciences and Applications, 14 (2021), 163-167.
[4] A. H. Ganie and N. A. Sheikh. (2013). On some new sequence space of non-absolute type and matrix transformations. J. Egypt. Math. Soc., (2013), 34-40.
[5] K. G. Gross Erdmann. (1993). Matrix transformations between the sequence spaces of Maddox. J. Math. Anal. Appl., 180(1993), 223-238.
[6] I. J. Maddox. (1968). Paranormed sequence spaces generated by infinite matrices. Proc. Camb. Phil. Soc., 64(1968), 335-340.
[7] M. Mursaleen, A. H. Ganie, and N. A. Sheikh. (2014). New type of difference sequenence spaces and matrix transformation. Filomat, 28(7), 1381-1392.
[8] N. A. Sheikh and A. H. Ganie. (2012). A new paranormed sequence space and some matrix transformations. Acta Math. Acad. Paeda. Nyregy., 28(2012), 47-58.
[9] H. Kizmaz. (1981). On certain sequence, Canad. Math. Bull., 24(2), 169-176.
[10] A. H. Ganie. (2021). Some new approach of spaces of non-integral order. J. Nonlinear Sci, Appl., 14(2), 89-96.
[11] A. H. Ganie and D. Fathima. (2020). Almost convergence property of generalized Riesz spaces. Journal of Applied Mathematics and Computation, 4(4), 249-253.
[12] A. H. Ganie and N. A. Sheikh. (2015). Infinite matrices and almost convergence. Filomat, 29(6), 1183-1188.
[13] A. H. Ganie, N. A. Sheikh, and T. Jalal. (2015). Matrix transformations of some sequence spaces over non-archmedian fields. J. Appl. Computat. Math., (4), 1-3.
[14] A. H. Ganie, N. A. Sheikh, and T. Jalal. (2015). On some new spaces of invariant means with respect to modulus function, The inter. Jou. Modern Math. Sciences, USA, 13(3), 210-216.
[15] A. H. Ganie, N. A. Sheikh, and T. Jalal. (2014). New type of sequence spaces and matrix transformations. The inter. Jou. Modern Math. Sciences, USA, 10(3), 125-129.
[16] A. H. Ganie, Mobin Ahmad, N. A. Sheikh, T. Jalal, and S. A. Gupkari. (2016). Some new type of difference se-quence space of non-absolute type, Int. J. Modern Math. Sci., 14(1), 116-122.
[17] A. H. Ganie. New spaces over modulus function. Boletim da Sociedade Paranaense de Matemática (in press), 1-6.
[18] P. A. Naik and T. A. Tarry. Matrix Representation of an All-inclusive Fibonacci Sequence. Asian J. Math. Stat., 11(1), 18-26.
[19] N. A. Sheikh and A. H. Ganie. (2013). New paranormed sequence space and some matrix transformations. Int. J. Mod. Math. Sci., 8(2), 185-194.