References
[1] V. Arpaci. (1966). Conduction Heat Transfer. Addison-Wesley, Reading, MA, 1966.
[2] A. V. Luikov. (1968). Analytical Heat Diffusion Theory, Academic Press, London, England, UK, 1968.
[3] G. E. Myers. (1971). Analytical Methods in Conduction Heat Transfer, McGraw-Hill, New York, 1971.
[4] U. Grigull and H. Sanders. (1984). Heat Conduction, Springer, Berlin, Germany, 1984.
[5] M. N. Özişik. (1993). Heat Conduction, 2nd edition, Wiley, New York, NY, 1993.
[6] D. Poulikakos. (1993). Conduction Heat Transfer, Prentice Hall, Englewood Cliffs, NJ, 1993.
[7] Y. Yener and S. Kakaç. (2008). Heat Conduction, 4th edition, CRC Press, Boca Raton, FL, 2008.
[8] D. W. Mackowski. (n.d.). Conduction Heat Transfer Notes. http://www.eng.auburn.edu/~ dmckwski/mech7210/ condbook.pdf.
[9] http://kitchingroup.cheme.cmu.edu/blog/2013/03/07/Transient-heat-conduction-partial-differential-equations.
[10] O. A. Liskovets. (1965). The method of lines, review (in Russian), Differenzial’nie Uravneniya, Vol. 1, pp. 1662-1668, 1965. English translation: Differential Equations, Vol. 1, pp. 1308-1323, 1965.
[11] E. Isaacson and H. B. Keller. (2012). Analysis of Numerical Methods, Revised edition, Dover Publications, New York, 2012.
[12] G. H. Golub and H. A. van der Vorst. (2000). Eigenvalue computation in the 20th century, Journal of Computation-al and Applied Mathematics, Vol. 3, No. 1-2, pp. 35-65, 2000.
[13] J. G. Verwer and J. M. Sanz-Serna. (1984). Convergence of method of lines approximations to partial differential equations, Computing, Vol. 33, pp. 297-313, 1984.
[14] S. C. Reddy and L. N. Trefethen. (1992). Stability of the method of lines, Numerische Mathematik, Vol. 62, Issue 1, pp. 235-267, 1992.
[15] A. Zafarullah. (1970). Application of the method of lines to parabolic partial differential equations with error estimates, Journal of the Association for Computing Machinery, Vol. 17, pp. 294-302, 1970.
[16] A. Campo and M. Arıcı. (2019). Semi-analytical, piecewise temperature–time distributions in solid bodies of regular shape affected by uniform surface heat flux: Combination of the Method Of Lines (MOL) and the eigenvalue method, International Communications in Heat and Mass Transfer, Vol. 108, Article #104276, 2019.
[17] A. Campo. The Numerical Method Of Lines (NMOL) facilitates the instruction of unsteady heat conduction in simple solid bodies with convective surfaces, International Journal of Mechanical Engineering Education. First Published 25 Mar 2020. https://doi.org/10.1177/0306419020910423.
[18] A. Campo and J. Garza. (2014). Transversal Method Of Lines (TMOL) for unsteady heat conduction with uniform surface heat flux, ASME Journal of Heat Transfer, Vol. 136, Paper No. 111302, 2014.
[19] A. Campo and Y. Masip-Macía. (2019). Semi-analytical solution of unsteady heat conduction in a large plane wall with convective boundary conditions for the “small-time” sub-domain using the Transversal Method Of Lines (TMOL), International Journal of Numerical Methods in Heat and Fluid Flow, Vol. 29, Issue 2, pp. 536-552, 2019.
[20] A. Campo and J. Sieres. (2020). Semi-analytical treatment of the unsteady heat conduction equation with prescribed surface temperature: The Transversal Method Of Lines (TMOL) delimited to the “small time” sub-domain, International Communications in Heat and Mass Transfer, Vol. 116, July 2020. Article number 1046872020.
[21] A. Campo and D. J. Celentano. (2020). Improved Transversal Method Of Lines (ITMOL) for unidirectional, un-steady heat conduction in regular solid bodies with heat convection exchange to nearby fluids, Computational Thermal Sciences: An International Journal, Vol. 12, Issue 2, pp. 179-189, 2020.