References
[1] Balkwill, F. R., Burke, F. (1989). The cytokine networks. Immunology Today, 10: 299-302.
[2] Chapel, H., Haeney, M., Mishbah, S., Snowden, N. (Eds). (2014). Essentials of Clinical Immunology. 6th Edition; UK: Wiley Blackwell Publication.
[3] Giasuddin, A. S. M., Ziu, M. M. (1996). Views for future development of cytokines in health and disease: Implications for clinical medicine. Journal of Islamic Academy of Sciences, 9(3): 67-74.
[4] Callard, R. E., Mathews, D. J., Hibbet. I. (1996). IL-4 and IL-13 receptors; are they one and the same? Immunology Today, 17:108-110.
[5] Burtis, C. A., Bruns, D. E., Sawyer, B. G. (Eds). Tietz Fundamentals of Clinical Chemistry and Molecular Biology, 7th Edition; ST. Louis, Missouri (USA): Elsevier Saunders, 2015.
[6] Romagnani, S. (1991). Human TH1 and TH2 subsets; doubt no more? Immunology Today, 12: 256-257.
[7] Adorini, L., Sinigaglia, F. (1997). Pathogenesis and immunotherapy of autoimmune diseases. Immunology Today, 18: 209-211.
[8] Symposium on “Future directions of cytokines and immunoglobulin therapy (nine review articles)”. (1992). Clinical Immunology and Immunopathology, 62: S1-S65.
[9] Billiau, A., Dijkmans, R. (1990). Interferon gamma: mechanism of action and therapeutic potential. Biochemical Pharmacology, 40: 1433-1441.
[10] Rusell, S. J. (1990). Lymphokine gene therapy for cancer. Immunology Today, 11: 196-201.
[11] Arend, W. P., Dayer, J. M. (1990). Cytokines and cytokine inhibitors or antagonists in rheumatic arthritis. Arthritis and Rheu-matism, 33: 305-312.
[12] WHO Director-General’s opening remarks at the media briefing on COVID-19: March 2020. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19%2D%2D-11- march-2020.
[13] Naming the coronavirus disease (COVID-19) and the virus that causes it: 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the- virus-that-causes-it.
[14] Coronavirus Disease 2019 (COVID-19) Situation Report 96: 2020. Available from: https://www.who.int/docs/default-source/ coronaviruse/situation-reports/20200425-sitrep-96-covid19.pdf.
[15] Lorenz, C., Azevedo, T. S., Chiaravalloti-Neto, F. (2020). COVID-19 and dengue fever: A dangerous combination for the health system in Brazil. Travel Medicine and Infectious Disease, 35: 101659. https://doi:10.1016/j.tmaid.2020.101659.
[16] Walls, A. C., Park, Y-J, Tortorici, M. A., Wall, A., McGuire, A. T., Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2): 281-292.e6.
[17] Astuti, I., Srafil, Y. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes and Metabolic Syndrome, 14(4): 407-412. Doi: 10.1016/j.dsx.2020.04.020. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7165108/.
[18] Zhang, J-j, Dong, X, Cao, Y-y, Yuan, Y-d, Yan, Y-B, Yan, Y-Q, et al. (2020). Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy, 75(7): 1730-1734. https://doi: 10.1111/all.14238.
[19] Gandhi, R. T., Lynch, J. B., del Rio, C. (2020). Mild or moderate Covid-19. New England Journal of Medicine, 383(18): 1757-1766. Available from: http://www.nejm.org/doi/10.1056 / NEJMcp2009249.
[20] Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19), 2020. Available from: https://www.who.int/publications-detail/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19).
[21] Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181: 271-280.e8.
[22] Zhang, C., Wu, Z., Li, J.-W., Zhao, H., Wang, G.-Q. (2020). Cytokine release syndrome (CRS) in severe COVID-19: Interleu-kin-6 receptor (IL-6R) antagonist tocilizumab may be the key to reduce mortality. International Journal of Antimicrobial Agents, 55(5): 105954. https://doi.org/10.1016/j.ijantimicag.2020.105954.
[23] Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 395: 1033-34.
[24] Rahmati, M. (2020). Cytokine-targeted therapy in severely ill COVID-19 patients: options and cautions. Eurasian Journal of Medical Oncology, Available from: https://www.ejmo.org/10.14744/ ejmo.2020.72142.
[25] Leisman, D. E., Deutschman, C. S., Legrand, M. (2020). Facing COVID-19 in the ICU: vascular dysfunction, thrombosis, and dysregulated inflammation. Intensive Care Medicine, 46: 1-4. Available from: http://link.springer.com/10.1007/s00134-020- 06059-6.
[26] Li, B., Feng, F., Yang, G., Liu, A., Yang, N., Jiang, Q., et al. (2020). Immunoglobulin G/M and cytokines detections in conti-nuous sera from patients with novel coronaviruses (2019-nCoV) infection. Rochester, NY: Social Science Research Network, 2020 Fed/ Report No.: ID 3543609. Available from: https://papers.ssrn.com/ abstract=3543609.
[27] Zhou, Y., Fu, B., Zheng, X., Wang, D., Zhao, C., Qi, Y., et al. (2020). Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. National Science Review, 7(6): 998-1002. Available from: https://doi.org/10.1093/nsr/nwaa041/5804736.
[28] Zheng, H.-Y., Zhang, M., Yang, C.-X., Zhang, N., Wang, X.-C., Yang, X.-P., et al. (2020). Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cellular and Molecular Immunology, 17: 541-543.
[29] Wu, Z., McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a Report of 72314 cases from the Chinese Center for Disease Control and Prevention. Journal of American Medical Association, 323(13): 1239-1242. https://doi:10.1001/jama.2020.2648.
[30] Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W.-C., Uhl, S., Hoagland, D., Møller, R., et al. (2020). Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell, 181(5): 1036-1045.e9. https://doi:10.1016/j.cell.2020.04.026 (2020).
[31] Lippi, G., Plebani, M., Henry, B. M. (2020). Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clinica Chemica Acta, 506: 145-148. https://doi:10.1016/j.cca.2020.03.022.
[32] Guan, W.-j, Ni, Z.-yi, Hu, Y, Liang, W.-h, Ou, C.-q, He, J.-x, et al. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine, 382: 1708-1720. https://DOI:10.1056/NEJMoa2002032.
[33] Costela-Ruiz, V. J., Illesces-Montes, R., Puerta-Puerta, J. M., Ruiz, C., Melguizo-Rodriguez. L. (2020). SARS-Cov-2 infection: The role of cytokines in COVID-19 disease. Cytokine and Growth Factor Reviews, 54: 62-75. https://doi:10.1016/cytogfr2020.06.001.
[34] Du, R.-H., Liang, L.-R., Yang, C.-Q., Wang, W., Cao, T.-z, Li. M., et al. (2020). Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. European Respiratory Journal, 55(5): 2000524; https://doi:10.1183/13993003.00524-2020.
[35] Wang, K., Zuo, P., Liu, Y., Zhang, M., Zhao, X., Xie, S., et al. (2020). Clinical and laboratory predictors of in-hospital mortality in patients with COVID-19: a cohort study in Wuhan, China. Clinical Infectious Diseases, 71(16): 2079-2088. https://doi.org/:10.1093/cid/ciaa538.
[36] Moore, J. B., June, C. H. (2020). Cytokine release syndrome in severe COVID-19. Science, 368: 473-474. https://doi:10.1126/science. abb8925.
[37] Diao, B., Wang, C., Tan, Y., Chen, X., Liu, Y., Ning, L., et al. (2020). Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Frontiers in Immunology, 11: 827. https://doi:10.3389/fimmu.2020.00827.
[38] Henrina, J., Putra, I. C. S., Lawrensea, S., Handoyono, Q. F., Cahyadi, A. (2020). Coronavirus disease of 2019: A mimicker of dengue infection? SN Comprehensive Clinical Medicine, 2: 1109-1119. Available from: https://doi.org/10.1007/s42399-020-00364-3.
[39] Adikari, T. N., Gomes, L., Wickramasinghe, N., Salimi, M., Wijesiriwardana, N., Kamaladasa, A., et al. (2016). Dengue NS1 antigen contributes to disease severity by inducing interleukin (IL)-10 by monocytes. Clinical and Experimental Immunology, 184(1): 90-100. https://doi:10.1111/cei.12747.
[40] Blumberg, N., Spinelli, S. L., Francis, C. W., Taubman, M. B., Phipps, R. P. (2009). The platelet as an immune cell-CD40 ligand and transfusion immunomodulation. Immunologic Research, 45(2-3): 251-260. https://doi:10.1007/s12026-009-8106-9.
[41] Wichmann, D., Sperhake, J.-P., Lutgehetmann, M., Steurer, S., Edler, C., Heinemann, A., et al. (2020). Autopsy findings and venous thromboembolism in patients with COVID-19. Annals of Internal Medicine, M20-2003. https://doi:10.7326/M20-2003.