References
[1] Cheng, G. F., Zhang, W. P., Liu, G. M., et al. (2004). The Liquid-born Noise and Its Control in Water Pipelines of Ships. Noise and Vibration Control, 31-33(24).
[2] Wu, Dazhuan, Liu, et al. (2015). Acoustic performance of a water muffler. Noise Control Engineering Journal, (63): 239-248.
[3] Gong, J. F., Xuan, L. K., Peng, C. M. (2019). Analysis of acoustic characteristics of the expansion chamber water muffler considering acoustic-structure interaction. Noise Control Engineering Journal, 4(67): 270-281.
[4] Yuan, S. W., Zhu, H. C., Hou, J. X. (2021). Finite element analysis of perforated tube water muffler with flexible dorsal cavity. Ship Science and Technology, 2(43): 76-79.
[5] Ross, D. F. (1981). A finite element analysis of perforated component acoustic systems. Journal of Sound and Vibration, 1981, 79(1): 133-143.
[6] Fang, Z., Ji, Z. L. (2012). Finite element analysis of transversal modes and acoustic attenuation characteristics of perforated tube silencers. Noise Control Engineering Journal, 3(60): 340-349.
[7] Munjal, M. L., Rao, K. N., Sahasrabudhe, A. D. (1987). Aeroacoustic analysis of perforated muffler components. Journal of Sound and Vibration, 114(2): 173-188.
[8] Xuan, L. K., Jin, G. Y., Gong, J. F., et al. (2014). Time domain finite volume method for three-dimensional struc-tural—acoustic coupling analysis. Applied Acoustics, 76(feb.): 138-149.
[9] Ji, Z. L., Selamet, A. (2004). Boundary element analysis of three-pass perforated duct mufflers. Noise Control Engineering Journal, 48(5): 151-156.
[10] T. W, Wu, et al. (1998). Boundary element analysis of mufflers with an improved method for deriving the four-pole parameters. Journal of Sound & Vibration.
[11] Liu, C., Ji, Z. L., Fang, Z. (2013). Numerical analysis of acoustic attenuation and flow resistance characteristics of double expansion chamber silencers. Noise Control Engineering Journal, 61(5): 487-499.
[12] Fang, Z., Liu, C. Y. (2017). Combined mesh free method and mode matching approach for transmission loss predictions of expansion chamber silencers. Engineering Analysis with Boundary Elements, 84: 168-177.
[13] Xu Zhou, Zhenlin Ji. (2016). Sound attenuation analysis of water-filled perforated pipe silencers using three-dimensional time-domain computational fluid dynamics approach. Advances in Mechanical Engineering.
[14] Brunner, D., Junge, M., Gaul, L. (2009). A comparison of FE-BE coupling schemes for large-scale problems with fluid—structure interaction. International Journal for Numerical Methods in Engineering, 77(5): 664-688.
[15] Lyon, R. H. (1963). Noise Reduction of Rectangular Enclosures with One Flexible Wall. The Journal of the Acoustical Society of America, 35(11): 1791-1797.
[16] Gladwell, G. (2001). On the reconstruction of a damped vibrating system from two complex spectra. Journal of Sound and Vibration.
[17] Norris, A., Wickham, G. (1993). Elastic Helmholtz resonators. Journal of the Acoustical Society of America, 92(4): 2454.
[18] Zhou, C. (2007). Effect of elastic cavity walls on acoustic characteristics of a water-filled Helmholtz resonator: equivalent lumped parameter model for cylindrical cavity. Acta Acustica., (32): 426-434.
[19] He, T., Sun, G., Sun, Y. D. (2014). Parameter analysis on hydrodynamic noise plate-silencer with fluid cavity. Journal of Ship Mechanics, 4(18): 459.
[20] Gong, J. F., Xuan, L. K., Zhou, J., et al. (2018). Effects of acoustic solid interaction on acoustic characteristics of water expansion chamber muffler. Journal of Harbin Institute of Technology, 189-193(50).
[21] Chen, Liu, Zhenlin, et al. (2014). Computational Fluid Dynamics-Based Numerical Analysis of Acoustic Attenuation and Flow Resistance Characteristics of Perforated Tube Silencers. Journal of vibration and acoustics: Transactions of the ASME. 136(2): 21001-21006.