References
[1] Osborne, A. (2010). Nonlinear ocean waves and inverse scattering transform, Elsevier, Amsterdam, 2010.
[2] Konopelchenko, B. G. (1991). Inverse spectral transform for the (2+1)-dimensional Gardner equation, Inverse Problems, V. 7, 1991, pp. 739-753.
[3] Konopelchenko, B. G., Dubrovsky, V. G. (1983). On the general structure of nonlinear equations integrable by the general linear spectral problem, Phys. Lett. A, V.95, N.9, 1983, pp. 457-461.
[4] Yu, G.-F., Tam, H.-W. (2007). On the (2+1)—dimensional Gardner equation: Determinant solutions and pfaffianization, J. Math. Anal. Appl., V.330, 2007, pp. 989-1001.
[5] Wazwaz, A. M. (2007). New solitons and kink solutions for the Gardner equation, Commun. Nonlin. Sci. Numer. Simulat., V.12, N.8, 2007, pp. 1395-1404.
[6] Wazwaz, A. M. (2008). Solitons and singular solitons for the Gardner-KP equation, Appl. Math. Comput., V.204, N.1, 2008, pp. 162-169.
[7] Wazwaz, A. M. (2014). Multiple kink solutions for the (2+1)-dimensional integrable Gardner equation, Proc. Romanian Acad. A, V.15, 2014, pp. 241-246.
[8] Naz, R., Ali, Z., Naeem, I. (2013). Reductions and new exact solutions of ZK, Gardner KP, and modified KP Equations via generalized double reduction theorem, Abstract and Applied Analysis, 2013, 340564.
[9] Cai, P., Tang, J.-S., Li, Z.-B. Bifurcation of exact traveling wave solutions for Gardner and Gardner--KP equations, Intern. J. Appl. Math. Statistics, V.44, N.14, pp. 461-468.
[10] Hirota, R. (2004). The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004.
[11] Wazwaz, A. M. (2017). Two (3+1)-dimensional Gardner-type equation with multiple kink solutions, Rom. Rep. Phys., V.69, N.108, 2017.
[12] Porubov, A. V., Maugin, G. A., Andrievsky, B. R. (2011). Wave Motion, doi: 10.1016/j.wavemoti. 2011.04.012. 2011.
[13] Vassilev, V. M., Djongjorov, P. A., Hadzhilazova, M. Ts., Mladenov, I. M. (2011). Traveling Wave Solutions of the Gardner Equation and Motion of Plane Curves Governed by the mKdV Flow, AIP Conf. Proc., V.1404, N.86, 2011. doi: 10.1063/1.3659907.