International Journal of Food Science and Agriculture

ISSN Print: 2578-3467 Downloads: 161154 Total View: 2555680
Frequency: quarterly ISSN Online: 2578-3475 CODEN: IJFSJ3
Email: ijfsa@hillpublisher.com
Article http://dx.doi.org/10.26855/ijfsa.2021.12.025

Antioxidant Potential of Fermented Milk Supplemented with Various Aqueous Herbal Extracts

Kanik1,2, Birbal Singh1, Jyoti B. Dhar1, Gauri Jairath1, Rinku Sharma1, Devi Gopinath1, Gorakh Mal1,*

1ICAR-Indian Veterinary Research Institute, Regional Station, Palampur (HP), India.

2CSK Himachal Pradesh Krishi VishvaVidyalay, Palampur (HP), India.

*Corresponding author: Gorakh Mal

Published: December 27,2021

Abstract

The objective of this study was to investigate the in vitro antioxidant activity of fermented milk of indigenous hill cattle (Himachali Pahari Cow) supplemented with various aqueous herbal extracts. The probiotic Lactobacillus rhamnosus GG (LGG) fermented milk supplemented with 1% aqueous herbal extracts of fruits of harad (Terminalia chebula), baheda (Terminalia bellerica), arjuna (Terminalia arjuna), and amla (Phyllanthus emblica) were evaluated for antioxidative activity. Fermented milk containing various aqueous herbal extracts, each @ 1.0%, and corresponding in vitro digested samples were centrifuged and analysed thereafter for estimation of total phenolic content (TPC), 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), ferric reducing antioxidant power (FRAP), and O-pthaldialdehyde (OPA) activity. TPC (mg TAE/100 ml) was significantly (P<0.05) higher in fermented milk containing aqueous baheda extract in undigested (26.43±1.16), pepsin digested (36.53±0.30) and overnight digested (33.98±0.26) samples. Lowest TPC was found in undigested sample of fermented milk containing aqueous arjuna extract. FRAP (mg FeSO4 equivalent/100ml) was significantly (P<0.05) higher in fermented milk containing aqueous harad extract in undigested (247.46±1.38), pepsin digested (266.21±0.38) and overnight digested (235.64±0.62) samples. DPPH (%) activity was found to be highest in undigested and pepsin-digested fermented milk containing aqueous baheda extract (26.40±0.94 and 39.66±0.44) while in overnight digested sample DPPH activity was lowest in fermented milk containing aqueous amla extract (27.31±0.48). Highest OPA (mg TE/ml) value was found in fermented milk containing aqueous harad extract in undigested milk (4.95±0.04), pepsin digested (8.08±0.15) and overnight digested milk (9.13±0.29). Based on the results described above, we speculate that herbal extracts in milk fermented by probiotic LGG had better antioxidant activity.

References

[1] Siro, I., Kapolna, E., Kapolna, B., and Lugasi, A. (2008). Review on Functional Food. Product Development, Marketing and Consumer Acceptance. Appetite, 51: 456-467.

[2] Gortzi, O., Rovoli, M., Lalas, S., and Kontopidis, G. (2015). Development and evaluation of a phospholipid-sterol-protein membrane resembling system. Food Biophysics, 10: 300-308.

[3] Kamizake, N. K. K., Gonaalves, M. M., Zaia, C. T. B. V., and Zaia, D. A. M. (2003). Determination of total proteins in cow milk powder samples: a comparative study between the Kjeldahl method and spectrophotometric methods. Journal of Food Composition and Analysis, 16: 507-516.

[4] Food and Agriculture organization of the united nation (FAO). (2019). Overview of global dairy market developments in 2018. Dairy Market Review, 1-11.

[5] Agarwal, K. N. and Bhasin, S. K. (2002). Feasibility studies to control acute diarrhoea in children by feeding fermented milk preparations Actimel and Indian Dahi. European Journal of Clinical Nutrition, 56: 56-59.

[6] Shori, A. B. and Baba, A. S. (2011). Comparative antioxidant activity, proteolysis and in-vitro α-amylase and α-glycosidase inhibiton of Allium sativum yogurts made from cow ad camel milk. Journal of Saudi chemical society, 1-8.

[7] Mohan, V., Jaydip, R., and Deepa, R. (2007). Type 2 diabetes in Asian Indian youth. Pediatric Diabetes, 8: 28-34.

[8] Hussain, S. A., Raju, P. N., Singh, R. R. B., and Patil, G. R. (2015). Potential herbs and herbal nutraceuticals: Food applications and interactions with food components. Critical Reviews in Food Science and Nutrition, 55: 94-122.

[9] Muthu, C., Ayyanar, M., Raja, N., and Ignaci, M. S. (2006). Medicinal plants used by traditional healers in Kancheepuram district of Tamil nadu, India. Journal of Ethnobiology and Ethnomedicine, 2. doi: 10.1186/1746-4269-2-43.

[10] Parmar, H. S., Panda, S., Jatwa, R., and Kar, A. (2006). Cardio-protective role of Terminalia arjuna bark extract is possibly mediated through alterations in thyroid hormones. Pharmazie, 61: 793-795.

[11] Mukherjee, P. K., Mukherjee, K., Kumar, M. R., Pal, M., and Saha, B. P. (2003). Evaluation of wound healing activity of some herbal formulations. Phytotherapy Research, 17: 265-268.

[12] Hitesh, M. and Puneeta, S. (2017). Terminalia Chebula: A Review Pharmacognistic and phytochemical studies. International Journal of Recent Scientific Research, 8: 21496-21507.

[13] Kannan, P., Ramadevi, S. R., Waheeta, H. (2009). Antibacterial activity of Terminalia chebula fruit extract. African Journal of Microbiology Research, 3: 180-184.

[14] Chattopadhyay, R. R., Bhattacharyya, S. K. (2007). Plant Review: Terminalia chebula: An update. Pharmacognnosy Reviews, 1: 151-156.

[15] Singh, A. S. (2011). Herbalism phytochemistry and Ethanopharmacology. Science publishers. 357-361.

[16] Dasaroju, S. and Gottumukkala, K. M. (2014). Current Trends in the Research of Emblica officinalis (Amla). International Journal Centre of Pharmaceutical Sciences, 24: 150-159.

[17] Kanik, Jairath, G., Singh, B., Dhar, J. B., Sharma, R., Gopinath, D, Sharma, N., and Mal, G. (2021). Antihypertensive activity of fermented milk containing various aqueous herbal extracts. International Journal of Food Science and Agriculture, 5(2), 326-331.

[18] Parrot, S., Degraeve, D., Couria, C. and Martial-Gros, A. (2003). In vitro study on digestion of peptides in Emmental cheese: Analytical evaluation and influence on angiotensin I converting enzyme inhibitory peptides. Nahrung/Food, 47: 87-94.

[19] Alyaqoubi, S., Abdullah, A., Samudi, M., Abdullah, N., Addai, Z.R. and Al-ghazali, M. (2014). Effect of different factors on goat milk antioxidant activity. International Journal of Chemical Technology and Research, 5: 3191-3096.

[20] Brand-Williams, W., Cuvelier, M. E., and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Science and Technology, 28: 25-30.

[21] Mal, G., Singh, B., Mane, B.G., Sharma, V., Sharma, R., Bhar, R. and Dhar, J. B. (2018). Milk composition, antioxidant activi-ties and protein profile of Gaddi goat milk. Journal of Food Biochemistry, 42: e12660. 

[22] Church, F. C., Swaisgood, H. E., Porter, D. H., Catigai, G. L. (1983). Spectrophotometric Assay Using o-Phthaldialdehyde for Determination of Proteolysis in Milk and Isolated Milk Proteins. Journal of Dairy Science, 66: 1219-1227.

[23] Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.

[24] Sharma, V. (2017). Bioactive potential of native cattle and goats milk. M.Sc. Thesis, p 36. Department of Biochemistry, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India.

[25] Pernoud, S., Schneid-Citrain, N., Agnetti, V., Breton, S. J., Faurie, M., Marchal, L., Obis, D., Oudot, E., Paquet, D., and Ro-binson, T. (2005). Application des bactéries lactiques dans les produits laitiers frais et effets probiotiques F.-M. Luquet, G. Corrieu (Edition.), Bactéries lactiques et probiotiques, Editions Technique & Documentation- Lavoisier, Paris, France, pp. 25-37: 51-66.

[26] Rahmawati, I. S. and Suntornsuk, W. (2016). Effects of fermentation and storage on bioactive activities in milks and yoghurts. Procedia Chemistry, 18: 53-62.

[27] Kerasioti, E., Stages, D., Georgatzi, V., Bregou, E., Priftis, A., Kafantaris, I. and Kouretas, D. (2016). Antioxidant effects of sheep whey protein on endothelial cells. Hindawi Publishing Corporation Oxidative Medicine and Cellular Longevity, 1-10.

[28] Singh, R., Mal, G., Kumar, D., Patil, N. V., and Pathak, K. M. L. (2017). Camel milk: An important natural adjuvant. Agricultural Research, 6(4): 327-340. 

[29] Kilicgun, H and Altiner, D. (2010). Correlation between antioxidant effect mechanism and polyphenol content of Rosa canina. Pharmacognosy magazine, 6(23): 238-241.

[30] Arya, A., Amathulla, S., Ibrahim-Noordin, M., and Ali-Mohd, M. (2012). Antioxidant and Hypoglycemic activities of leaf extracts of three popular Terminalia species. E-Journal of Chemistry, 9(2): 883-892. 

[31] Helal and Tagliazucchi, D. (2018). Impact of in-vitro gastro-pancreatic digestion onn poluphenols and cinnamaldehyde bioac-cessibilty and antioxidant activity in stirred cinnamon-fortified yogurt. LWT- food science and technology, 89: 164-170.

[32] Srivastava, P., Prasad, S. G. M., Ali, M. N., Prasad, M. (2015). Analysis of antioxidant activity of herbal yogurt prepared from different Milk. The Pharma innovation, 4(3): 18-21.

[33] Lonnerdal, B. (2000). Breast milk: a truly functional food. Nutrition, 16: 509-511.

[34] Zarban, A., Taheri, F., Chahkandi, T., Sharifzadeh, G., and Khorashadizadeh, M. (2009). Antioxidant and radical scavenging activity of human colostrum, transitional and mature milk. Journal of Clinical Biochemistry and Nutrition, 45: 150-154.

[35] Kumar, S., Chouhan, V. S., Sanghi, A., and Teotia, U. V. S. (2013). Antioxidative effect of yak milk caseinates hydrolyzed with three different proteases. Veterinary World, 6: 799-802.

[36] Lee, H. S., Won, N. H., Kim, K. H., Lee, H., Jun, W., and Lee, K. W. (2005). Antioxidant effects of aqueous extract of Termi-nalia chebula in vivo and in vitro. Biological and Pharmaceutical Bulletin, 28: 1639-1644.

[37] Lee, H. S., Jung, S. H., Yun, B. S. and Lee, K. W. (2007). Isolation of chebulic acid from Terminalia chebula Retz. and its antioxidant effect in isolated rat hepatocytes. Archives of Toxicology, 81: 211-218.

[38] Tejesvi, M. V., Kini, K. R., Prakash, H. S., Subbiah, V., and Shetty, H. S. (2008). Antioxidant, antihypertensive, and antibacterial properties of endophytic Pestalotiopsis species from medicinal plants. Canadian Journal of Microbiology, 54: 769-780.

[39] Jain, N., Goyal, S., and Ramawat, K. G. (2011). Evaluation of antioxidant properties and total phenolic content of medicine plants used in diet therapy during postpartum healthcare in Rajasthan. International journal of pharmacy and pharmaceutical sciences, 3: 248-253.

[40] Saha, S. and Verma, R. J. (2016). Antioxidant activity of polyphenolic extract of Terminaliachebula Retzius fruits. Journal of Taibah University for Science, 10(6): 805-812.

[41] Cheng, H., Lin, T., Yu, K., Yang, K., and Lin, C. (2003). Antioxidant and freeradical scavenging activities of Terminalia chebula. Biological Pharmaceutical Bulletin, 26: 1331-1335.

[42] Lobo, V. C., Anita, P., and Naresh, C. (2010). Antioxidant availability of Baheda (Terminalia bellerica (Roxb.)) in relation to its medicinal uses. Pharmacognosy journal, 2: 338-344.

[43] Chen, T. S., Liou, S. Y., Chang, Y. L. (2009). Supplementation of Emblica Officinalis (Amla) Extract Reduces Oxidative Stress in Uremic Patients. The American Journal of Chinese Medicine, 37(1): 19-25.

[44] Singh, B., Bhat, T. K., and Singh, B. (2003). Potential therapeutic applications of some anti-nutritional plant secondary metabolites. Review. Journal of Agricultural and Food Chemistry, 51: 5579-97.

[45] Sharma, D., Mal, G., Kannan, A., Bhar, R., Sharma, R., and Singh, B. (2017). Degradation of euptox A by tannase-producing rumen bacteria from migratory goats. Journal of Applied Microbiology, 123: 1194-1202. 

[46] Sharma, V., Singh, B., Sharma, R., Dhar, J. B., Sharma, N., and Mal, G. (2019). Antioxidative activity and protein profile of skim milk of Gaddi goats and hill cattle of North West Himalayan region. Veterinary World, 12(10): 1535-1539. 

[47] Sharma, V., Singh, B., Jairath, G., Dhar, J. B., Sharma, R., Gopinath, D, Sharma, N., and Mal, G. (2021). “Effect of Thermal Processing on Antioxidant and Antimicrobial Activities in Different Milk Types”. Acta Scientific Veterinary Sciences, 3.10 (2021): 70-79.

[48] Dupont, D., Mandalari, G., Molle, D., Jardin, J., Rolet-Repecaud, O., Duboz, G., Leonil, J., Mills, E. N. C., and Mackie, A. R. (2010). Food processing increases casein resistance to simulated infant digestion. Molecular Nutrition & Food Research, 54: 1677-1689.

[49] Macierzanka, A., Sancho, A. I., Mills, E. N. C., Rigby, N. M., and Mackie, A. R. (2009). Emulsification alters simulated ga-strointestinal proteolysis of beta-casein and beta-lactoglobulin. Soft Matter, 5: 538-550. 

[50] Mandalari, G., Adel-Patient, K., Barkholt, V., Baro, C., Bennett, L., Bublin, M., Gaier, S., Graser, G., Ladics, G., and Mierze-jewska, D. (2009). In vitro digestibility of beta-casein and beta-lactoglobulin under simulated human gastric and duodenal con-ditions. A multi-laboratory evaluation. Regulatory Toxicology and Pharmacology, 55: 372-381.

[51] Rahaman, T., Vasiljevic, T., and Ramchandran, L. (2017). Digestibility and antigenicity of beta-lactoglobulin as affected by heat, pH and applied shear. Food Chemistry, 217: 517-523.

[52] Sanchez-Rivera, L., Menard, O., Recio, I., and Dupont, D. (2015). Peptide mapping during dynamic gastric digestion of heated and unheated skimmed milk powder. Food Research International, 77: 132-139. 

[53] Singh, T. K., Oiseth, S. K., Lundin, L., and Day, L. (2014). Influence of heat and shear induced protein aggregation on the in vitro digestion rate of whey proteins. Food Function, 5: 2686-2698.

How to cite this paper

Antioxidant Potential of Fermented Milk Supplemented with Various Aqueous Herbal Extracts

How to cite this paper: Kanik, Birbal Singh, Jyoti B. Dhar, Gauri Jairath, Rinku Sharma, Devi Gopinath, Gorakh Mal. (2021) Antioxidant Potential of Fermented Milk Supplemented with Various Aqueous Herbal Extracts. International Journal of Food Science and Agriculture5(4), 762-774.

DOI: http://dx.doi.org/10.26855/ijfsa.2021.12.025