References
[1] Balázs, K. (1975). Approximation by Bernstein type rational function. Acta Math. Acad. Sci. Hungar, Vol. 26, No. 1-2, 123-134.
[2] Balázs, K. and Szabados, J. (1982). Approximation by Bernstein type rational function II. Acta Math. Acad. Sci. Hungar, Vol. 40, No. 3-4, 331-337.
[3] Hamal, H. and Sabancigil, P. (2020). Some Approximation properties of new Kantorovich type q-analogue of Balazs-Szabados Operators. J. Inequal. Appl, Vol: 159, No: 1-16.
[4] Doğru, O. (2006). On Statistical Approximation Properties of Stancu type bivariate generalization of Balázs-Szabados operators. Proceedings. Int. Conf. on Numer. Anal. and Approx. Theory Cluj-Napoca, Romania. 179-194.
[5] Özkan, E. Y. (2019). Approximation Properties of Kantorovich type Balázs-Szabados operators. Demonstr. Math., 52, 10-19.
[6] Mahmudov, N. I. (2016). Approximation Properties of the Balázs-Szabados Complex Operators in the case. Comput. Methods Funct. Theory. Vol: 16, 567-583.
[7] İspir, N., Özkan, E. Y. (2013). Approximation Properties of Complex Balázs-Szabados Operators in Compact Disks. J. Inequal and Appl., 361.
[8] Mursaleen, M., Ansari, K. J., and Khan, A. (2015). On analogue of Bernstein operators, Appl. Math. Comput, (266),874-882. [Erratum: Appl. Math. Comput. 278, 70-71 (2016)].
[9] Mursaleen, M., Sarsenbi, A. M., Khan, T. (2016). On analogue of two parametric Stancu-Beta operators. J. Inequal. Appl, Artical ID 190.
[10] Mursaleen, M., Khan, A. (2014). Statistical approximation for new positive linear operators of lagrange type. Appl. Math. Comput., 232, 548-558.
[11] Mursaleen, M., Ansari, K. J., and Khan, A. (2016). Approximation by Lorentz polynomials on a compact disk, Comlex Anal.Oper. Theory, 10(8), 1725-1740.
[12] Mursaleen, M., Nasiruzzaman, M., Khan, A., and Ansari, K. J. (2016). Some approximation results on Bleimann-Butzer-Hahn operators defined by integers, Filomat, (30) (3), 639-648.
[13] Mursaleen, M., Ansari, K. J., and Khan, A. (2016). Some approximation results for Bernstein-Kantorovich operators based on calculus. U.P.B. Sci. Bull. Series A., (78) (4), 129-142.
[14] Mursaleen, M., Ansari, K. J., and Khan, A. (2015). Some approximation results by analogue of Bernstein-Stancu operators. Appl. Math. Compt., (246), 392-402.
[15] Acar, T. (2016). Generalization of Szász-Mirakyan operators. Math. Methods Appl. Sci., 39 (15), 2685-2695.
[16] Acar, T., Aral, A., Mohiuddine, S. A. (2016). On Kantorovich modification of Baskakov operators. J. Inequal. Appl., (98).
[17] Özkan, E. Y., Ispir N. (2018). Approximation by Analogue of Balázs-Szabados Operators. Filomat, 32(6), 2257-2271.
[18] Hamal, H. and Sabancigil, P. (2021). Some Approximation Properties of new (p,q)-analogue of Balázs-Szabados Operators. J. Inequal. Appl., No: 162.
[19] Aral, A., Gupta,V., Agarwal, R. P. (2013). Applications of Calculus in Operator Theory. Springer, Chapters: 4, 5.
[20] Aral, A., Gupta, V. (2010). Convergence of analogue of Szasz-Beta operators. Appl. Math. Comput, Vol: 216, No: 2, 374-380.
[21] Gadzhiev, A. D. (1974). The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P.P Korovkin. Sov. Math. Dokl, Vol: 15, No: 5, 1433-1436.
[22] Gadzhiev, A. D. (1976). P. P. Korovkin type theorems, Mathem. Zametki, Vol: 20, No: 5, Engl. Transl. Math Notes, Vol: 20, No: 5-6, 995-998.
[23] Altomare, F. (2010). Korovkin-type Theorems and Approximation by Positive Linear Operators. Surv. Approx. Theory, 5, 92-164.
[24] Gadzhiev, A. D., Efendiyev, E., Ibikl. (2003). On Korovkin type theorem in the space of locally integrable functions. Czech. Math.J, Vol: 53, No: (128)(1), 45-53.
[25] Yuksel, I., Ispir, N. (2006). Weighted approximation by a certain family of summation integral-type operators. Comput. Math. Appl, Vol: 52, No: 10-11, 1463-1470.
[26] López-Moreno, A.-J. (2004). Weighted simultaneous approximation with Baskakov type operators. Acta Math. Hunger, Vol: 104, No: 1-2, 143-151.