References
[1] Krajewski, K. M., et al. (2000). Neurological dysfunction and axonal degeneration in Charcot–Marie–Tooth disease type 1A. Brain, 123(Pt 7): 1516-27.
[2] Szigeti, K., Lupski, J. R. (2009). Charcot–Marie–Tooth disease. European Journal of Human Genetics, 17: 703-710.
[3] Jani-Acsadi, A., et al. (2008). Charcot-Marie-Tooth Neuropathies: Diagnosis and Management. Neuromuscular Disorders; M.D.Semin Neurol, 28: 185-194.
[4] Yiu Eppie, M., et al. (2008). Neurophysiologic abnormalities in children with Charcot-Marie-Tooth disease type 1A. Journal of the Peripheral Nervous System, 13(3): 236-41.
[5] Gemignani, F., et al. (1999). Charcot–Marie–Tooth disease type 2 with restless legs syndrome. Neurology, 52: 1064-1066.
[6] Mostacciuolo, M. L., et al. (2001). Charcot–Marie–Tooth disease type I and related demyelinating neuropathies: mutation analysis in a large cohort of Italian families. Human Mutation, 18: 32-41.
[7] Berciano, J., et al. (2011). Charcot-Marie-Tooth disease: a review with emphasis on the pathophysiology of pes cavus. Revista Española de Cirugía Ortopédica y Traumatología (English Edition), 55(2): 140-150.
[8] Le, T., Bhushan, V. (2001). 201 First Aid for the USMLE Step 14. McGraw-Hill Education, USA.
[9] Soykan, I., McCallum, R. W. (1997). Gastrointestinal involvement in neurologic disorders: Stiff-man and Charcot–Marie–Tooth syndromes. The American Journal of the Medical Sciences, 313(1): 70-73.
[10] Fernando, M., et al. (2013). Biomechanical characteristics of peripheral diabetic neuropathy: A systematic review and meta-analysis of findings from the gait cycle, muscle activity and dynamic barefoot plantar pressure. Clinical Biomechanics, 28: 831-845.
[11] Huang, C. K., et al. (2019). An altered spatiotemporal gait adjustment during a virtual obstacle crossing task in patients with diabetic peripheral neuropathy. Journal of Diabetes and its Complications, 33: 182-188.
[12] Fernando, M., et al. (2013). Biomechanical characteristics of peripheral diabetic neuropathy: A systematic review and meta-analysis of findings from the gait cycle, muscle activity and dynamic barefoot plantar pressure. Clinical Biomechanics, 28: 831-845.
[13] Leardini, A., et al. (2007). Rear-foot, mid-foot and forefoot motion during the stance phase of gait. Gait Posture, 25: 453-462.
[14] Manal, K., Stanhope, S. J. (2004). A novel method for displaying gait and clinical movement analysis data. Gait Posture, 20: 222-226.
[15] De Ridder, R., et al. (2013). Gait kinematics of subjects with ankle instability using a multisegmented foot model. Medicine & Science in Sports & Exercise, 45: 2129-36.
[16] Fernando, M., et al. (2013). Biomechanical characteristics of peripheral diabetic neuropathy: A systematic review and meta-analysis of findings from the gait cycle, muscle activity and dynamic barefoot plantar pressure. Clinical Biomechanics, 28: 831-845.
[17] Rezende, A., et al. (2013). Muscle strength and ankle mobility for the gait parameters in diabetic neuropathies. Clinical Bio-mechanics, 23: 17-21.
[18] Deschamps, K., et al. (2013). Comparison of foot segmental mobility and coupling during gait between patients with diabetes mellitus with and without neuropathy and adults without diabetes. Clinical Biomechanics, 28: 813-819.
[19] Ashofteh Yazdi, A., Esteki, A., and Dehghan, M. M. (2019). Determination of an average quasi-linear viscoelastic model for the mechanical behavior of rat cervix. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(5): 924-929.
[20] Yazdi, A. A., Esteki, A., Dehghan, M. M., and Ghomsheh, F. T. (2016). Characterization of viscoelastic behavior of rat cervix in the last trimester of pregnancy. Biomed Res, 27(4): 1194-1200.
[21] Yazdi, A. A., Melchor, J., Torres, J., Faris, I., Callejas, A., Gonzalez-Andrades, M., and Rus, G. (2020). Characterization of non-linear mechanical behavior of the cornea. Scientific Reports, 10(1): 1-10.