magazinelogo

Journal of Applied Mathematics and Computation

ISSN Print: 2576-0645 Downloads: 168064 Total View: 1932783
Frequency: quarterly ISSN Online: 2576-0653 CODEN: JAMCEZ
Email: jamc@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/ jamc.2018.04.001

Hamiltonian Equations on Kähler-Einstein Fano-Weyl Manifolds

Şevket Civelek1, Zeki Kasap2,*

1Department of Mathematics, Pamukkale University, Science Faculty, Denizli/Turkey.

2Department of Elementary Mathematics Education, Pamukkale University, Faculty of Education, Denizli/Turkey.

*Corresponding author: Zeki Kasap

Published: April 14,2018

Abstract

The paper aims to introduce Hamiltonian equations for mechanical systems using Kähler angles on Kähler-Einstein Fano-Weyl manifold which represent an interesting multidisciplinary field of research. Also, solutions of these equations will be made using the computer program with Maple and the geometrical-physical results related to on Kähler-Einstein Fano-Weyl mechanical systems are also to be issued.

References

Arezzoa C. and Naveb G.L., Minimal two spheres in Kähler-Einstein Fano manifolds, Advances in Mathematics, 191(1), 2005, 209-223.

Besse A.L., Einstein Manifolds, Springer, 1987.

Chen X., Donaldson S. and Sun S., Kähler-Einstein metrics on Fano manifolds, III: Limits as cone angle approaches 2π and completion of the main proof, http://arxiv.org/abs/1302.0282v1, 2013.

De Leon M. and Rodrigues P.R., Methods of Differential Geometry in Analytical Mechanics, North-Hol. Math. St., Elsevier, 1989.

Folland G.B., Weyl manifolds, J . Differential Geometry, 4, (1970), 145-153.

Gilkey P. and Nikčević S., Kähler and para-Kähler curvature Weyl manifolds, arXiv:1011.4844v1, 2010.

Goldstein H., Poole C. and Safko J., Classical Mechanics, Addison Wesley, 2002.

Hall G.S., Weyl manifolds and connections, Journal of Mathematical Physics, 33(7), (1992). Klein J., Escapes Variationnals et Mécanique, Ann. Inst. Fourier, Grenoble, 12, 1962.

Han Y., Ho T.Y. and Fu F., A classification of conformal-Weyl manifolds in a view of non-metric connections, Facta Universitatis, Series: Mathematics and Informatics, 31(2), (2016), 513-527.

Kadosh L., Topics in Weyl Geometry, Ph.D. Thesis, University of California, Berkeley, CA, USA, (1996).

Kasap Z. and Tekkoyun M., Mechanical systems on almost para/pseudo-Kähler-Weyl manifolds, IJGMMP, 10(5), 2013, 1-8.

Li C., Wang X. and Xu C., Degeneration of Fano Kähler-Einstein manifolds, http://arxiv.org/abs/1411.0761, 2014.

McDu D. and Salamon D., J-holomorphic Curves and Quantum Cohomology, 1995.

Mo X., Minimal surfaces with constant Kähler angle in complex projective spaces, Proceedings of The American Mathematical Society, 121(2), 1994.

Salavessa I.M.C. and Valli G., Minimal submanifolds of Kähler-Einstein manifolds with equal Kähler angles, PJM, 205(1), 2002, 1-12.

Scharnhorst K., Angles in complex vector spaces, Acta Applicandae Mathematica, 69(1), 2001, 95-103.

Suss H., Kähler-Einstein metrics on symmetric Fano T-varieties, arXiv:1208.3597, 2012.Tian G., Kähler-Einstein metrics on Fano manifolds, Japanese Journal of Mathematics, 10(1), 2015, 1-41.

ThidéB., Electromagnetic Field Theory, School of Mathematics and Systems Engineering, Växjö University, Sweden, 2004.

Tian G., Existence of Einstein metrics on Fano manifolds, Metric and Differential Geometry, 297, 2012, 119-159.

Wang X.J. and Zhu X., Kähler--Ricci solitons on toric manifolds with positive first Chern class, Advances in Mathematics, 188, 2004, 87-103.

Weyl H., Space Time Matter, Lectures on General Relativity, German, Berlin, Springer, 1921.

Wolfson J.G., Minimal surfaces in Kähler surfaces and Ricci curvature, JDG, 29, 1989, 281-294.

Zedda M., Kähler immersions of Kähler-Einstein manifolds into infinite dimensional complex space forms, Università Studi di Cagliari Dipartimento di Matematica e Informatica, 2009.

How to cite this paper

Hamiltonian Equations on Kähler-Einstein Fano-Weyl Manifolds

How to cite this paper: Şevket Civelek, Zeki Kasap. (2018). Hamiltonian Equations on Kähler-Einstein Fano-Weyl Manifolds. Journal of Applied Mathematics and Computation, 2(4), 107-115.

DOI: http://dx.doi.org/10.26855/ jamc.2018.04.001