magazinelogo

International Journal of Clinical and Experimental Medicine Research

ISSN Print: 2575-7989 Downloads: 161416 Total View: 2139095
Frequency: quarterly ISSN Online: 2575-7970 CODEN: IJCEMH
Email: ijcemr@hillpublisher.com
Article http://dx.doi.org/10.26855/ijcemr.2022.01.016

Latest Research Progress of the Pathogenesis of Depression and Its Status of TCM Treatment

Hesheng Zheng1, Yumei Wu2,*

1Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China.

2Fourth Military Medical University, Xi'an, Shaanxi, China.

*Corresponding author: Yumei Wu

Published: February 10,2022

Abstract

Depressive disorder (DD) is one of the most common mental disorders and one of the main causes of disability in the world. Chronic or early life stress events are one of the main factors of DD. Recent studies have shown that the microbiota-gut-brain axis imbalance, the abnormal electrical activity of lateral habenula, and genetic variation are closely related to DD. Especially, in recent years, the emergence of the microbiota-gut-brain axis has attracted extensive attention. At present, the existing antidepressants and the therapeutic effect is not obvious even invalid for many patients, and it is likely to cause adverse effects. Traditional Chinese Medicine has obvious therapeutic effects, which are safe, reliable, low price, and significantly reduced the use of western medicine and its side effects. Therefore, traditional Chinese medicine and its therapeutic method gradually are applied to the clinical treatment of DD and achieved good results. The article summarizes the latest pathogenesis of DD and reviewed the mechanism of traditional Chinese medicine participating in DD treatment, to provide a reference for the clinical treatment of depression.

References

[1] Pereira, J. D. C., Rea, K., Nolan, Y. M., et al. (2020). Depression’s Unholy Trinity: Dysregulated Stress, Immunity, and the Microbiome [J]. Annual Review of Psychology, 2020, 71(1): null.

[2] Cui, Y., Hu, S., Hu, H. (2019). Lateral Habenular Burst Firing as a Target of the Rapid Antidepressant Effects of Ketamine [J]. Trends Neurosci, 2019, 42(3): 179-191.

[3] Ng, A., Tam, W. W., Zhang, M. W., et al. (2018). IL-1beta, IL-6, TNF- alpha and CRP in Elderly Patients with Depression or Alzheimer’s disease: Systematic Review and Meta-Analysis [J]. Sci Rep, 2018, 8(1): 12050.

[4] Leng, L., Zhuang, K., Liu, Z., et al. (2018). Menin deficiency leads to depressive-like behaviors in mice by modulating astro-cyte-mediated neuroinflammation [J]. Neuron, 2018, 100(3): 551-563. e557.

[5] De Kloet, E. R., Joëls, M., Holsboer, F. (2005). Stress and the brain: from adaptation to disease [J]. Nature reviews neuroscience, 2005, 6(6): 463.

[6] Howard, D. M., Adams, M. J., Clarke, T.-K., et al. (2019). Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions [J]. Nature Neuroscience, 2019, 22(3): 343.

[7] Evrensel, A., Ceylan, M. E. (2015). The Gut-Brain Axis: The Missing Link in Depression [J]. Clin Psychopharmacol Neurosci, 2015, 13(3): 239-244.

[8] Hammen, C. (2016). Depression and stressful environments: identifying gaps in conceptualization and measurement [J]. Anxiety Stress Coping, 2016, 29(4): 335-351.

[9] Gotlib, I. H., Joormann, J. (2010). Cognition and depression: current status and future directions [J]. Annu Rev Clin Psychol., 2010, 6: 285-312.

[10] Turner, R. J., Wheaton, B., Lloyd, D. A. (1995). The epidemiology of social stress [J]. American Sociological Review, 1995: 104-125.

[11] Forsythe, P., Sudo, N., Dinan, T., et al. (2010). Mood and gut feelings [J]. Brain, Behavior, and Immunity, 2010, 24(1): 9-16.

[12] Liang, S., Wang, T., Hu, X., et al. (2012). Microorganism and behavior and psychiatric disorders [J]. Advances in Psychological Science, 2012, 20(1): 75-97.

[13] Liang, S., Wu, X., Hu, X., et al. (2018). Recognizing depression from the microbiota-gut-brain axis [J]. International Journal of Molecular Sciences, 2018, 19(6): 1592.

[14] Evrensel, A., Önen Ünsalver, B., Ceylan, M. E. (2019). Therapeutic potential of the microbiome in the treatment of neuropsy-chiatric disorders [J]. Medical Sciences, 2019, 7(2): 21.

[15] Evrensel, A., Unsalver, B. O., Ceylan, M. E. (2019). Neuroinflammation, Gut-Brain Axis and Depression [J]. Psychiatry Investig, 2019.

[16] Bercik, P., Collins, S. M. (2014). The effects of inflammation, infection and antibiotics on the microbiota-gut-brain axis [A]. In: microbial endocrinology: the microbiota-gut-brain axis in health and disease: Springer, 2014: 279-289.

[17] Lurie, I., Yang, Y.-X., Haynes, K., et al. (2015). Antibiotic exposure and the risk for depression, anxiety, or psychosis: a nested case-control study [J]. The Journal of Clinical Psychiatry, 2015, 76(11): 1522-1528.

[18] Fröhlich, E. E., Farzi, A., Mayerhofer, R., et al. (2016). Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication [J]. Brain, Behavior, and Immunity, 2016, 56: 140-155.

[19] Kelly, J. R., Borre, Y., O'Brien, C., et al. (2016). Transferring the blues: depression-associated gut microbiota induces neuro-behavioural changes in the rat [J]. Journal of Psychiatric Research, 2016, 82: 109-118.

[20] Jiang, H., Ling, Z., Zhang, Y., et al. (2015). Altered fecal microbiota composition in patients with major depressive disorder [J]. Brain, Behavior, and Immunity, 2015, 48: 186-194.

[21] Liang, S., Wang, T., Hu, X., et al. (2015). Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress [J]. Neuroscience, 2015, 310: 561-577.

[22] Park, A., Collins, J., Blennerhassett, P., et al. (2013). Altered colonic function and microbiota profile in a mouse model of chronic depression [J]. Neurogastroenterology & Motility, 2013, 25(9): 733-e575.

[23] Yu, M., Jia, H., Zhou, C., et al. (2017). Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics [J]. Journal of Pharmaceutical and Biomedical Analysis, 2017, 138: 231-239.

[24] Bharwani, A., Mian, M. F., Surette, M. G., et al. (2017). Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress [J]. BMC Medicine, 2017, 15(1): 7.

[25] O'Mahony, S. M., Marchesi, J. R., Scully, P., et al. (2009). Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses [J]. Biological Psychiatry, 2009, 65(3): 263-267.

[26] Foster, J. A., Neufeld, K.-A. M. (2013). Gut–brain axis: how the microbiome influences anxiety and depression [J]. Trends in Neurosciences, 2013, 36(5): 305-312.

[27] Bravo, J. A., Forsythe, P., Chew, M. V., et al. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve [J]. Proceedings of the National Academy of Sciences, 2011, 108(38): 16050-16055.

[28] Sherwin, E., Bordenstein, S. R., Quinn, J. L., et al. (2019). Microbiota and the social brain [J]. Science, 2019, 366(6465).

[29] Pearson-Leary, J., Zhao, C., Bittinger, K., et al. (2019). The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in the ventral hippocampus of stress vulnerable rats [J]. Molecular Psychiatry, 2019: 1.

[30] Li, K., Zhou, T., Liao, L., et al. (2013). βCaMKII in lateral habenula mediates core symptoms of depression [J]. Science, 2013, 341(6149): 1016-1020.

[31] Morris, J., Smith, K., Cowen, P., et al. (1999). Covariation of activity in habenula and dorsal raphe nuclei following tryptophan depletion [J]. Neuroimage, 1999, 10(2): 163-172.

[32] Lecca, S., Pelosi, A., Tchenio, A., et al. (2016). Rescue of GABA B and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice [J]. Nature Medicine, 2016, 22(3): 254.

[33] Li, B., Piriz, J., Mirrione, M., et al. (2011). Synaptic potentiation onto habenula neurons in the learned helplessness model of depression [J]. Nature, 2011, 470(7335): 535.

[34] Shumake, J., Edwards, E., Gonzalez-Lima, F. (2003). Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior [J]. Brain Research, 2003, 963(1-2): 274-281.

[35] Herkenham, M., Nauta, W. J. (1979). Efferent connections of the habenular nuclei in the rat [J]. Journal of Comparative Neurology, 1979, 187(1): 19-47.

[36] Herkenham, M. (1979). The afferent and efferent connections of the ventromedial thalamic nucleus in the rat [J]. Journal of Comparative Neurology, 1979, 183(3): 487-517.

[37] Aizawa, H., Amo, R., Okamoto, H. (2011). Phylogeny and ontogeny of the habenular structure [J]. Frontiers in Neuroscience, 2011, 5: 138.

[38] Yang, Y., Cui, Y., Sang, K., et al. (2018). Ketamine blocks bursting in the lateral habenula to rapidly relieve depression [J]. Nature, 2018, 554(7692): 317-322.

[39] Cui, Y., Yang, Y., Ni, Z., et al. (2018). Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression [J]. Nature, 2018, 554(7692): 323-327.

[40] Norman, G., Karelina, K., Zhang, N., et al. (2010). Stress and IL-1β contribute to the development of depressive-like behavior following peripheral nerve injury [J]. Molecular psychiatry, 2010, 15(4): 404.

[41] Koo, J. W., Duman, R. S. (2009). Evidence for IL-1 receptor blockade as a therapeutic strategy for the treatment of depression [J]. Current opinion in investigational drugs (London, England: 2000), 2009, 10(7): 664.

[42] Oeckinghaus, A., Ghosh, S. (2009). The NF-κB family of transcription factors and its regulation [J]. Cold Spring Harbor perspectives in biology, 2009, 1(4): a000034.

[43] Y. Li, L. Wang, P. Wang, et al. (2020). Ginsenoside-Rg1 Rescues Stress-Induced Depression-Like Behaviors via Suppression of Oxidative Stress and Neural Inflammation in Rats [J]. Oxid Med Cell Longev, 2020, 2020: 2325391.

[44] L. Ge, L. Liu, H. Liu, et al. (2015). Resveratrol abrogates lipopolysaccharide-induced depressive-like behavior, neuroinflammatory response, and CREB/BDNF signaling in mice [J]. Eur J Pharmacol., 2015, 768: 49-57.

[45] D. D. Tian, M. Wang, A. Liu, et al. (2021). Antidepressant Effect of Paeoniflorin Is Through Inhibiting Pyroptosis CASP-11/GSDMD Pathway [J]. Mol Neurobiol, 2021, 58 (2): 761-776.

[46] W. J. Fu. Bacopin can regulate intestinal microbiota to affect KP pathway and improve depression in mice [D]. China Medical University, 2021.

[47] L. Yan, X. Xu, Z. He, et al. (2020). Antidepressant-Like Effects and Cognitive Enhancement of Coadministration of Chaihu Shugan San and Fluoxetine: Dependent on the BDNF-ERK-CREB Signaling Pathway in the Hippocampus and Frontal Cortex [J]. Biomed Res Int, 2020, 2020: 2794263.

[48] Y. Liu, W. Wang, Y. Chen, et al. (2020). Simultaneous quantification of nine components in the plasma of depressed rats after oral administration of Chaihu-Shugan-San by ultra-performance liquid chromatography/quadrupole-time-of-flight mass spec-trometry and its application to pharmacokinetic studies [J]. J Pharm Biomed Anal., 2020, 186: 113310.

[49] S. S. Peng, J. Yue. (2018). Effects of Chaihu Shugan pill on behavioral performance and cognitive function in diabetic rats with depression [J]. Chinese Journal of Gerontology, 2018, 38(24): 6069-6071.

[50] K. K. Jia, Y. J. Zheng, Y. X. Zhang, et al. (2017). Banxia-houpu decoction restores glucose intolerance in CUMS rats through improvement of insulin signaling and suppression of NLRP3 inflammasome activation in liver and brain [J]. J Ethnopharmacol, 2017, 209: 219-229.

[51] K. H. Liu, J. W. Sun, X. H. Hu. (2019). Effect of Suanzaoren Decoction on glial fibrillary acidic protein and gap junction protein 43 in cerebral cortex astrocytes of depressed rats [J]. New Traditional Chinese Medicine, 2019, 51(10): 13-16.

[52] X. J. Song, R. Li, N. Ding, et al. (2016). Effects of tongdu tiaosheng and shugan jieyu on behavior and HPA axis of depression model rats [J]. Journal of Clinical Acupuncture and Moxibustion, 2016, 32(02): 64-68.

[53] S. Y. Jin, L. Hu, W. Y. Bao, et al. (2014). Effects of acupuncture on serum and encephalitis cytokines in chronic stress depressed rats [J]. Journal of Clinical Acupuncture and Moxibustion, 2014, 30(05): 57-60.

[54] Y. Yi, F. M. Xu, P. Xie, et al. (2012). Resting state functional magnetic resonance study of acupuncture Taichong acupoint regulating brain function in depression [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2012, 27(02): 369-373.

[55] T. B. Brust, F. S. Cayabyab, and B. A. MacVicar. (2007). C-Jun N-terminal kinase regulates adenosine A1 receptor-mediated synaptic depression in the rat hippocampus [J]. Neuropharmacology, 2007, 53 (8): 906-17.

[56] M. Mitic, I. Lukic, N. Bozovic, et al. (2015). Fluoxetine signature on hippocampal MAPK signalling in sex-dependent manner [J]. J Mol Neurosci, 2015, 55(2): 335-46.

[57] Q. Y. Yu, X. J. Yang, H. L. Jiang, et al. (2021). Effect of acupuncture on JNK signaling pathway expression in prefrontal cortex of depressed rats [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2021, 36(06): 3157-3161.

[58] J. Y. Teng, Z. G. Li, Y. Bai, et al. (2013). Effects of different electroacupuncture on the content of GAS NPY CGRP in colonic mucosa of depressed rats [J]. World Journal of Integrated Traditional and Western Medicine, 2013, 8(03): 226-229.

[59] L. N. Qin. (2007). Study on the mechanism of electroacupuncture improving digestive function in depressed rats [D]. Beijing University of Traditional Chinese Medicine, 2007.

How to cite this paper

Latest Research Progress of the Pathogenesis of Depression and Its Status of TCM Treatment

How to cite this paper: Hesheng Zheng, Yumei Wu. (2022) Latest Research Progress of the Pathogenesis of Depression and Its Status of TCM TreatmentInternational Journal of Clinical and Experimental Medicine Research6(1), 97-102.

DOI: https://dx.doi.org/10.26855/ijcemr.2022.01.016