References
[1] Pereira, J. D. C., Rea, K., Nolan, Y. M., et al. (2020). Depression’s Unholy Trinity: Dysregulated Stress, Immunity, and the Microbiome [J]. Annual Review of Psychology, 2020, 71(1): null.
[2] Cui, Y., Hu, S., Hu, H. (2019). Lateral Habenular Burst Firing as a Target of the Rapid Antidepressant Effects of Ketamine [J]. Trends Neurosci, 2019, 42(3): 179-191.
[3] Ng, A., Tam, W. W., Zhang, M. W., et al. (2018). IL-1beta, IL-6, TNF- alpha and CRP in Elderly Patients with Depression or Alzheimer’s disease: Systematic Review and Meta-Analysis [J]. Sci Rep, 2018, 8(1): 12050.
[4] Leng, L., Zhuang, K., Liu, Z., et al. (2018). Menin deficiency leads to depressive-like behaviors in mice by modulating astro-cyte-mediated neuroinflammation [J]. Neuron, 2018, 100(3): 551-563. e557.
[5] De Kloet, E. R., Joëls, M., Holsboer, F. (2005). Stress and the brain: from adaptation to disease [J]. Nature reviews neuroscience, 2005, 6(6): 463.
[6] Howard, D. M., Adams, M. J., Clarke, T.-K., et al. (2019). Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions [J]. Nature Neuroscience, 2019, 22(3): 343.
[7] Evrensel, A., Ceylan, M. E. (2015). The Gut-Brain Axis: The Missing Link in Depression [J]. Clin Psychopharmacol Neurosci, 2015, 13(3): 239-244.
[8] Hammen, C. (2016). Depression and stressful environments: identifying gaps in conceptualization and measurement [J]. Anxiety Stress Coping, 2016, 29(4): 335-351.
[9] Gotlib, I. H., Joormann, J. (2010). Cognition and depression: current status and future directions [J]. Annu Rev Clin Psychol., 2010, 6: 285-312.
[10] Turner, R. J., Wheaton, B., Lloyd, D. A. (1995). The epidemiology of social stress [J]. American Sociological Review, 1995: 104-125.
[11] Forsythe, P., Sudo, N., Dinan, T., et al. (2010). Mood and gut feelings [J]. Brain, Behavior, and Immunity, 2010, 24(1): 9-16.
[12] Liang, S., Wang, T., Hu, X., et al. (2012). Microorganism and behavior and psychiatric disorders [J]. Advances in Psychological Science, 2012, 20(1): 75-97.
[13] Liang, S., Wu, X., Hu, X., et al. (2018). Recognizing depression from the microbiota-gut-brain axis [J]. International Journal of Molecular Sciences, 2018, 19(6): 1592.
[14] Evrensel, A., Önen Ünsalver, B., Ceylan, M. E. (2019). Therapeutic potential of the microbiome in the treatment of neuropsy-chiatric disorders [J]. Medical Sciences, 2019, 7(2): 21.
[15] Evrensel, A., Unsalver, B. O., Ceylan, M. E. (2019). Neuroinflammation, Gut-Brain Axis and Depression [J]. Psychiatry Investig, 2019.
[16] Bercik, P., Collins, S. M. (2014). The effects of inflammation, infection and antibiotics on the microbiota-gut-brain axis [A]. In: microbial endocrinology: the microbiota-gut-brain axis in health and disease: Springer, 2014: 279-289.
[17] Lurie, I., Yang, Y.-X., Haynes, K., et al. (2015). Antibiotic exposure and the risk for depression, anxiety, or psychosis: a nested case-control study [J]. The Journal of Clinical Psychiatry, 2015, 76(11): 1522-1528.
[18] Fröhlich, E. E., Farzi, A., Mayerhofer, R., et al. (2016). Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication [J]. Brain, Behavior, and Immunity, 2016, 56: 140-155.
[19] Kelly, J. R., Borre, Y., O'Brien, C., et al. (2016). Transferring the blues: depression-associated gut microbiota induces neuro-behavioural changes in the rat [J]. Journal of Psychiatric Research, 2016, 82: 109-118.
[20] Jiang, H., Ling, Z., Zhang, Y., et al. (2015). Altered fecal microbiota composition in patients with major depressive disorder [J]. Brain, Behavior, and Immunity, 2015, 48: 186-194.
[21] Liang, S., Wang, T., Hu, X., et al. (2015). Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress [J]. Neuroscience, 2015, 310: 561-577.
[22] Park, A., Collins, J., Blennerhassett, P., et al. (2013). Altered colonic function and microbiota profile in a mouse model of chronic depression [J]. Neurogastroenterology & Motility, 2013, 25(9): 733-e575.
[23] Yu, M., Jia, H., Zhou, C., et al. (2017). Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics [J]. Journal of Pharmaceutical and Biomedical Analysis, 2017, 138: 231-239.
[24] Bharwani, A., Mian, M. F., Surette, M. G., et al. (2017). Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress [J]. BMC Medicine, 2017, 15(1): 7.
[25] O'Mahony, S. M., Marchesi, J. R., Scully, P., et al. (2009). Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses [J]. Biological Psychiatry, 2009, 65(3): 263-267.
[26] Foster, J. A., Neufeld, K.-A. M. (2013). Gut–brain axis: how the microbiome influences anxiety and depression [J]. Trends in Neurosciences, 2013, 36(5): 305-312.
[27] Bravo, J. A., Forsythe, P., Chew, M. V., et al. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve [J]. Proceedings of the National Academy of Sciences, 2011, 108(38): 16050-16055.
[28] Sherwin, E., Bordenstein, S. R., Quinn, J. L., et al. (2019). Microbiota and the social brain [J]. Science, 2019, 366(6465).
[29] Pearson-Leary, J., Zhao, C., Bittinger, K., et al. (2019). The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in the ventral hippocampus of stress vulnerable rats [J]. Molecular Psychiatry, 2019: 1.
[30] Li, K., Zhou, T., Liao, L., et al. (2013). βCaMKII in lateral habenula mediates core symptoms of depression [J]. Science, 2013, 341(6149): 1016-1020.
[31] Morris, J., Smith, K., Cowen, P., et al. (1999). Covariation of activity in habenula and dorsal raphe nuclei following tryptophan depletion [J]. Neuroimage, 1999, 10(2): 163-172.
[32] Lecca, S., Pelosi, A., Tchenio, A., et al. (2016). Rescue of GABA B and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice [J]. Nature Medicine, 2016, 22(3): 254.
[33] Li, B., Piriz, J., Mirrione, M., et al. (2011). Synaptic potentiation onto habenula neurons in the learned helplessness model of depression [J]. Nature, 2011, 470(7335): 535.
[34] Shumake, J., Edwards, E., Gonzalez-Lima, F. (2003). Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior [J]. Brain Research, 2003, 963(1-2): 274-281.
[35] Herkenham, M., Nauta, W. J. (1979). Efferent connections of the habenular nuclei in the rat [J]. Journal of Comparative Neurology, 1979, 187(1): 19-47.
[36] Herkenham, M. (1979). The afferent and efferent connections of the ventromedial thalamic nucleus in the rat [J]. Journal of Comparative Neurology, 1979, 183(3): 487-517.
[37] Aizawa, H., Amo, R., Okamoto, H. (2011). Phylogeny and ontogeny of the habenular structure [J]. Frontiers in Neuroscience, 2011, 5: 138.
[38] Yang, Y., Cui, Y., Sang, K., et al. (2018). Ketamine blocks bursting in the lateral habenula to rapidly relieve depression [J]. Nature, 2018, 554(7692): 317-322.
[39] Cui, Y., Yang, Y., Ni, Z., et al. (2018). Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression [J]. Nature, 2018, 554(7692): 323-327.
[40] Norman, G., Karelina, K., Zhang, N., et al. (2010). Stress and IL-1β contribute to the development of depressive-like behavior following peripheral nerve injury [J]. Molecular psychiatry, 2010, 15(4): 404.
[41] Koo, J. W., Duman, R. S. (2009). Evidence for IL-1 receptor blockade as a therapeutic strategy for the treatment of depression [J]. Current opinion in investigational drugs (London, England: 2000), 2009, 10(7): 664.
[42] Oeckinghaus, A., Ghosh, S. (2009). The NF-κB family of transcription factors and its regulation [J]. Cold Spring Harbor perspectives in biology, 2009, 1(4): a000034.
[43] Y. Li, L. Wang, P. Wang, et al. (2020). Ginsenoside-Rg1 Rescues Stress-Induced Depression-Like Behaviors via Suppression of Oxidative Stress and Neural Inflammation in Rats [J]. Oxid Med Cell Longev, 2020, 2020: 2325391.
[44] L. Ge, L. Liu, H. Liu, et al. (2015). Resveratrol abrogates lipopolysaccharide-induced depressive-like behavior, neuroinflammatory response, and CREB/BDNF signaling in mice [J]. Eur J Pharmacol., 2015, 768: 49-57.
[45] D. D. Tian, M. Wang, A. Liu, et al. (2021). Antidepressant Effect of Paeoniflorin Is Through Inhibiting Pyroptosis CASP-11/GSDMD Pathway [J]. Mol Neurobiol, 2021, 58 (2): 761-776.
[46] W. J. Fu. Bacopin can regulate intestinal microbiota to affect KP pathway and improve depression in mice [D]. China Medical University, 2021.
[47] L. Yan, X. Xu, Z. He, et al. (2020). Antidepressant-Like Effects and Cognitive Enhancement of Coadministration of Chaihu Shugan San and Fluoxetine: Dependent on the BDNF-ERK-CREB Signaling Pathway in the Hippocampus and Frontal Cortex [J]. Biomed Res Int, 2020, 2020: 2794263.
[48] Y. Liu, W. Wang, Y. Chen, et al. (2020). Simultaneous quantification of nine components in the plasma of depressed rats after oral administration of Chaihu-Shugan-San by ultra-performance liquid chromatography/quadrupole-time-of-flight mass spec-trometry and its application to pharmacokinetic studies [J]. J Pharm Biomed Anal., 2020, 186: 113310.
[49] S. S. Peng, J. Yue. (2018). Effects of Chaihu Shugan pill on behavioral performance and cognitive function in diabetic rats with depression [J]. Chinese Journal of Gerontology, 2018, 38(24): 6069-6071.
[50] K. K. Jia, Y. J. Zheng, Y. X. Zhang, et al. (2017). Banxia-houpu decoction restores glucose intolerance in CUMS rats through improvement of insulin signaling and suppression of NLRP3 inflammasome activation in liver and brain [J]. J Ethnopharmacol, 2017, 209: 219-229.
[51] K. H. Liu, J. W. Sun, X. H. Hu. (2019). Effect of Suanzaoren Decoction on glial fibrillary acidic protein and gap junction protein 43 in cerebral cortex astrocytes of depressed rats [J]. New Traditional Chinese Medicine, 2019, 51(10): 13-16.
[52] X. J. Song, R. Li, N. Ding, et al. (2016). Effects of tongdu tiaosheng and shugan jieyu on behavior and HPA axis of depression model rats [J]. Journal of Clinical Acupuncture and Moxibustion, 2016, 32(02): 64-68.
[53] S. Y. Jin, L. Hu, W. Y. Bao, et al. (2014). Effects of acupuncture on serum and encephalitis cytokines in chronic stress depressed rats [J]. Journal of Clinical Acupuncture and Moxibustion, 2014, 30(05): 57-60.
[54] Y. Yi, F. M. Xu, P. Xie, et al. (2012). Resting state functional magnetic resonance study of acupuncture Taichong acupoint regulating brain function in depression [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2012, 27(02): 369-373.
[55] T. B. Brust, F. S. Cayabyab, and B. A. MacVicar. (2007). C-Jun N-terminal kinase regulates adenosine A1 receptor-mediated synaptic depression in the rat hippocampus [J]. Neuropharmacology, 2007, 53 (8): 906-17.
[56] M. Mitic, I. Lukic, N. Bozovic, et al. (2015). Fluoxetine signature on hippocampal MAPK signalling in sex-dependent manner [J]. J Mol Neurosci, 2015, 55(2): 335-46.
[57] Q. Y. Yu, X. J. Yang, H. L. Jiang, et al. (2021). Effect of acupuncture on JNK signaling pathway expression in prefrontal cortex of depressed rats [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2021, 36(06): 3157-3161.
[58] J. Y. Teng, Z. G. Li, Y. Bai, et al. (2013). Effects of different electroacupuncture on the content of GAS NPY CGRP in colonic mucosa of depressed rats [J]. World Journal of Integrated Traditional and Western Medicine, 2013, 8(03): 226-229.
[59] L. N. Qin. (2007). Study on the mechanism of electroacupuncture improving digestive function in depressed rats [D]. Beijing University of Traditional Chinese Medicine, 2007.