References
[1] Esquivel, N., Y. García, M. Martínez, B. Lores, and C. Rodríguez. (2021). Aged-Related Cognitive decline in female C57BL/6cenp mice 15-16 months of age. J Biomed Eng., (2021)5: 1-12.
[2] Sharma, B., Singh, N. (2010). Pitavastatin and 4′-hydroxy- 3′-methoxyacetophenone (HMAP). Reduce cognitive dysfunction in vascular dementia during experimental diabetes. CurrNeurovasc Res., 2010, 7: 180-91.
[3] Anand, A., Avijit, B., Keshav, T., and Colin, L. M. (2012). The Animal Models of Dementia and Alzheimer’s disease for Pre-Clinical Testing and Clinical Translation. Current Alzheimer Research, 2012, 9, 1010-1029.
[4] Llibre, J. R. and M. Guerra. (2016). Alzheimer disease. Actual situation and terapeutic strategies. Actual Themes. Military Hospital “Carlos J. Finlay”, p. 9.
[5] Navarrete, F., J. M. Pérez-Ortiz, T. Femenía, M. S. García-Gutiérrez, M. E. García-Payá, C. Leiva-Santana, and J. Manzanares. (2008). Methods of evaluating cognitive disorders in animal models. RevNeurol, 47(3): 137-145.
[6] Neha, R. K., Amteshwar, S. J., and Nirmal, S. (2014). Animal models of dementia and cognitive dysfunction. Life Sci., 2014, http://dx.doi.org/10.1016/j.lfs.2014.05.017.
[7] Carrié, I., M. Debray, J. M. Bourre, H. Francés. (1999). Age-Induced Cognitive Alterations in OF1 Mice, Physiology & Behavior, Vol. 66, No. 4, pp. 651-656, 1999.
[8] Esquivel, N., Y. García, B. Lores, M. Gutiérrez, and C. Rodríguez. (2020). Characterization of aged male BALB/ccenp mice as a model of dementia. Laboratory Animal Research, (2020)36: 7. https://doi.org/10.1186/s42826-020-00038-0.
[9] Hughes, R. N. (2004). The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investiga-tions of memory. NeurosciBiobehav Rev., 2004, 28(5): 497-505.
[10] García, Y., Esquivel, N. (2018). Comparison of the Response of Male BALB/c and C57BL/6 mice in Behavioral Tasks to Evaluate Cognitive Function. Behav. Sci., 2018, 8(14). doi: 10.3390/bs8010014.
[11] Ennaceur, A. and J. Delacour. (1988). A new one-trial test for neurobiological studies of memory in rats. Behavioral data. Behav Brain Res., 31: 47-59.
[12] Uwe, M. and J. Von Hagen. (2009). Isolation of subcellular organelles and structures. Methods Enz., 463: 305-326.
[13] Okawa, O., N. Ohishi, and K. Yagi. (1979). Assay of lipid peroxides in animal tissues by the thiobarbituric acid reaction. Anal Biochem. 95(2): 351-58.
[14] Upreti, G. C., R. A. Ratcliff, and Riches, P. C. (1988). Protein Estimation in Tissues Containing High Levels of Lipid: Modifi-cations to Lowry’s Method of Protein Determination. Analytical Biochemestry, 168: 421-427.
[15] Resnick, A. Z. and L. Packer. (1994). Oxidative damage to proteins: Spectrophometric method for carbonyl assay. Methods Enz., 233: 357-63.
[16] Fahlstrom, A., Zeberg, H., and Ulfhake, B. (2012). Changes in behaviors of male C57BL/6J mice across adult life span and effects of dietary restriction. Age, 2012, 34(6): 1435-1452.
[17] Glatt, V., Canalis, E., Stadmeyer, L., and Bouxsein, M. L. (2007). Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. Journal of Bone and Mineral Research, 2007, 22(8): 1197-1207.
[18] Marino, D. J. (2012). Age-specific absolute and relative organ weight distributions for B6C3F1 mice. Journal of Toxicology and Environmental Health, 2012, 75(2): 76-99.
[19] Polanco, L. A. (2011). Animal models: A review from three used task in anxiety. Suma Psicológica, 18(2): 141-148.
[20] Antunes, M. and G. Biala. (2012). The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process, 13: 93-110.
[21] R. D’Hooge and P. P. De Deyn. (2001). Applications of the Morris water maze in the study of learning and memory. Brain Research Reviews, 36 (2001): 60-90.
[22] Schrag, E. (2011). Iron, zinc and copper in the Alzheimer’s disease brain: a quantitative meta‐analysis. Some insight on the influence of citation bias on scientific opinion. Prog Neurobiol, 2011, 94(3): 296-306.
[23] Lull, M. and Block, M. (2010). Microglial activation and chronic neurodegeneration. Neurotherapeutics: the Journal of the American Society for Experimental, 2010, 7: 354-365.
[24] Cunnane, S. C., S. Nugent, M. Roy, A. Courchesne-Loyer, E. Croteau, and S. Tremblay. (2011). Brain fuel metabolism, aging and Alzheimer’s disease. Nutrition, 27(1): 3-20.
[25] Araki, S., M. Okazaki, and S. Goto. (2004). Impaired lipid metabolism in aged mice as revealed by fasting-induced expression of apolipoprotein mRNAs in the liver and changes in serum lipids. Gerontology, 50(4): 206-215.
[26] Gibson, G. E. and H. M. Huang. (2005). Oxidative stress in Alzheimer’s disease. Neurobiol Aging, 26: 575-578.
[27] Sultana, R. and D. A. Butterfield. (2013). Oxidative modification of brain proteins in Alzheimer’s disease: perspective on future studies based on results of redox proteomics studies. J Alzheimers Dis., 33: 243-251.
[28] Myhre, O., Utkilen, H., Duale, N., Brunborg, G., and Hofer, T. (2013). Metal dyshomeostasis and Inflammation in Alzheimer’s and Parkinson’s diseases: Possible impact of environmental Exposure. Oxidative Medicine and Celular Longevity, 2013. http://dx.doi.org/10.1155/2013/726954.
[29] Ramírez-Ramírez, D., J. Valenti-Pérez, M. García, Z. Batista, and J. Estrada. (2013). Oxidative stress in aged rats. Finlay Journal, 3(4).
[30] Quintanar Escorza, M. A. and Calderón Salinas, J. V. (2009). Totac antioxidant capacity. Base and aplications. REB, 2009, 28(3): 89-101.