References
[1] ASM Metals Handbook. (1992). Properties and Selection: Irons, Steels, and High-Performance Alloys, Vol-1, ASM publications, Metals Park, Ohio, USA, 1992, 877-878.
[2] www.uxoinfo.com/blogcfc/client/includes/uxopage/mulvaney_details.cfm?Ord_ld=R6, visited on 26 November 2020.
[3] M. Marshall, J. C. Oxley. Aspects of explosive detection, Elsevier, Amsterdam, Netherlands. DOI: 10.1021/ac60160a013.
[4] M. Lopez, L. Carmen, G. Ruiz. (2014). Infrared and Raman spectroscopy techniques applied to identification of explosives, TaAC Trends in Analytical Chemistry, 54, 36-44.
[5] D. J. Klapec, G. Czarnopys. (2016). Analysis and detection of explosives and explosives residues review: 2013 to 2016, in: 18th Interpol International Forensic Science Managers Symposium, Lyon 11th-13th October 2016, 2016, pp. 194-261.
[6] D. J. Klapec, G. Czarnopys, J. Pannuto. Interpol review of detection and characterization of explosives and explosives residues 2016-2019. Forensic Science International: Synergy, Available online 17 June 2020.
[7] ASM Metals Handbook, Volume-10, Materials Characterization, 5th Edition, 1998, Metals Park Ohio, pp. 244-245.
[8] C. S. C. Yang, B. R. Williams, A. Tripathi, M. S. Hulet, S. Melissa, C. Alen, J. A. Dominico, A. Joseph, M. Joseph, R. W. Miles, A. W. Fountain. (2014). Special characterization of RDX, ETN, PENT, TATP, HMTD, HMX, and C-4 in the mid-infrared region, Report No: ECBC-TR-1243, Battelle Eastern Science & Technology Center, Department of Homeland Security, 245 Murray Lane SW, Washington DC, 2014.
[9] S. P. Sherma, S. C. Lahiri. (2005). Characterization and identification of explosives and explosive residues using GC-MS, and FRIR microscope and HPTLC. Journal of Energetic Materials, 23, 4, 239-264.
[10] C. R. Walker, K. K. Starr. (1989). Failure Analysis Handbook, Pratt & Whitney, West Palm Beach, FL, 1989, 46-50.
[11] V. Ramachandran, A. C. Raghuram, R. V. Krishnan, and S. K. Bhaumik. (2005). Failure Analysis of Engineering Structures Methodology and Case Histories, ASM International, Metals Park, Ohio, 2005, 11-29.
[12] M. Mansoor, N. Ejaz. (2009). Prediction of in-service microstructural degradation of A106 steel using eddy current technique. Materials Characterization, 60, 1591-1596.
[13] ASM Metals Handbook, Fractography, Vol-12, ASM publications, Metals Park, Ohio, USA, 1992 34-40.
[14] Modern Physical Metallurgy and Materials Engineering, R. E. Smallman, R. J. Bishop, Sixth Edition, Butterworth-Heinemann Publishers, Oxford, 1999, 42-44.
[15] ASTM Standard Designation: E 92-82, Standard test method for Vickers hardness of metallic materials, 2003. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
[16] ASTM Standard Designation: E 8-04, Standard test methods for tension testing of metallic materials, 2003, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
[17] ASTM Standard Designation: E 23-2a, Standard test methods for notched bar impact testing of metallic materials, 1999, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
[18] M. Mansoor, A. Tauqir. (2008). Failure of heat exchanger tubes due to localized scaling and microstructural transformation. Journal of Failure Analysis and Prevention, 8, 434-440.
[19] http://science.howstuffworks.com/rpg.htm visited on 14 December 2020.