References
[1] Fauzi, M., Rinaldi, dan Handayani, F. Y. (2012). Selection of the type of frequency of maximum annual daily rain in the Akuaman River area, West Sumatra Province. Jurnal Sains dan Teknologi, Vol. 11, No. 1, 18-24.
[2] Annas, S., Arisandi, R. (2016). Rainfall Forecasting Using Bayesian Nonparametric Regression. Proceeding of 3th International Conferense on Research, Implementation and Education of Mathematics and Science. Yogyakarta.
[3] Sidehabi, S. W. dan Indrabayu. (2013). ANFIS for Daily Rainfall Prediction. Seminar Nasional Teknik Informatika (SNATIKA). ISBN: 978-602-8509-20-6.
[4] Annas, S., Arisandi, R. (2016). Improving the accuracy of rainfall forecasting using multivariate transfer function and resilient backpropagation neural network. AIP Conference Proceedings, 1885(1), 020184.
[5] Abdy, M., Syam, R., Haryanensi, E. (2018). Metode Automatic Clustering-Fuzzy Logical Relationships on Population Forecasting in Makassar City. Journal of Mathematics, Computations, and Statistics, Vol. 1. No. 2, 193-205.
[6] Annas, S., Kanai, T., Koyama, S. (2005). Neuro-fuzzy System for Modeling Rainfall in Indonesia. Proceeding of the International Conference on Research Highlights and Vanguard Technology on Environmental Engineering in Agricultural Systems. Kanazawa University, Japan, September 12-15, 2005, pp. 77-82.
[7] Annas, S., Kanai, T., Koyama, S. (2007). Assessing Daily Tropical Rainfall Variations Using a Neuro-fuzzy Classification Model. Ecological Informatics. Elsevier. Volume 2, Issue 2, 1 June 2007, Pages 159-166.
[8] Musadar, F., Zainuddin, Z., Baharuddin, M. (2012). Algorithm Implementation of Rain Precipitation Forecasting in Early Flood Disaster Detection System. Hasanuddin University Postgraduate. Makassar.
[9] Kysely, J. and Picek, J. (2007). Probability estimates of heavy precipitation events in a flood-prone central-European region with enhanced influence of Mediterranean cyclones. Advances in Geosciences, Vol. 12, 43-50.
[10] Bílková, D. (2014). Robust parameter estimations using L-Moments, TL-Moments and the order statistiks. American Journal of Applied Mathematics, Vol. 2, No. 2, 36-53.
[11] Sanusi, W., Abdy, M., Side, S. (2018). The use of the L-Moment method in modeling the maximum daily rainfall of Makassar City. Prosiding Seminal Nasional Lembaga Penelitian UNM. ISBN: 978-602-5554-71-1.
[12] Forestieri, A., Conti, F. L., Blenkinsop, S., Cannarozzo, M., Fowler, H. J., dan Noto, L. V. (2018). Regional frequency analysis of extreme rainfall in Sicily (Italia). Internasional Journal of Climatology, 2018, Publish online in wileyonlinelibrary.com.
[13] Sanusi, W., Mulbar, U., Jaya, H., Purnamawati dan Side, S. (2017). Modeling of rainfall characteristics monitoring of the extreme rainfall event in Makassar City. American Journal of Applied Sciences, Vol. 14, No. 4, 456-461.
[14] Rinaldi, A., Yulianur, A., Yulizar. (2018). Analysis of the frequency of extreme rainfall in Nagan Raya District using the L-Moment method. Konferensi Nasional Teknik Sipil 12. ISBN: 978-602-60286-1-7.
[15] Alahmadi, F. (2017). Regional rainfall frequency analysis by L-Moment approach for Madina region, Saudi Arabia. International journal of engineering research and development, Vol. 13, No. 7, 39-48.
[16] Sabri, A. dan Ariff, N. M. (2009). Frequency analysis of maximum dalily rainfalls via L-Moment approach. Sains Malaysiana, Vol. 38, No. 2, 149-158.
[17] BPS Provinsi Sulawesi Selatan. (2019). South Sulawesi Province in Numbers 2019. Catalog 1102001.73. ISSN/ISBN 0215-2290. (Accesses 30 September 2019).