References
[1] B. S. Kashin. (1981). On widths of Sobolev classes with low smoothness. Vestn. Mosk. Univ., Ser., Mech, 5, 50-54.
[2] E. D. Kulanin. (1985). On widths of functions classes with low smoothness. Dokl Bolg. Akad Nauk, 38, 1601-1602.
[3] E. D. Kulanin. (1983). Estimates of widths of Sobolev classes with low smoothness. Vestn. Mosk. Univ., Ser., Mech, 2, 244-300.
[4] E. M. Galeev. (1986). Estimates of kolmogorov widths of classes of periodic functions of many variable with low smoothness, in THeory of Functions and applications [in Russian], Moscow Univ., Moscow, pp. 17-24.
[5] J. Creutzig. (2002). Relations between classical, average and probabilistic Kolmogorov widths, J. Complexity, 18, 287-303.
[6] E. M. Galeev. (1990). Kolmogorov widths of classes periodic functions of one and many variables. Izv. Akad. Nauk.SSSR, 54, 2, 418-430.
[7] A. S. Romanyuk. (1994). On Kolmogorov widths of classes of periodic functions of many variables with low smoothness in the space . Ukr. Math. J. 46, 7, 1003-1014.
[8] V. E. Maiorov. (1975). Discretization of the problem of diameters}. Uspekhi. Mat. Nauk, 30, 179-180.
[9] V. E. Maiorov. (1982). On linear widths of Sobolev classes and chains of extremal subspaces, Mat.Sb., 113(115), 437-463; English transl. in Math. USSR Sb. 41.
[10] V. E. Maiorov. (1994). Kolmogorov’s -widths of the spaces of the smooth functions. Russian Acad. Sci. Sb. Math., 79, 265-279.
[11] V. E. Maiorov. (1994). Linear widths of function spaces equipped with the Gussian measure. J. Approx. Theory, 77, 74-88.
[12] P. Math\'{e}. (1990). S-numbers in information-based complexity. J. Complexity, 6, 41-66.
[13] P. Math\'{e}. (1991). Random approximation of Sobolev embeddings. J. Complexity, 7, 261-281.
[14] P. Math\'{e}. (1993). A minimax principle for the optimal error of Monte Carlo methods. Constr. Approx., 9, 23-29.
[15] P. Math\'{e}. (1993). On optimal random nets. J. Complexity, 9, 171-180.
[16] P. Math\'{e}. (1994). Approximation Theory of Stochastic Numerical Methods. Habilitationsschrift, Fachbereich Mathematik, Freie Universit\"{a}t Berlin.
[17] K. Ritter. (2000). Average-case analysis of numerical problems. Lecture Notes in Math, Vol. 1733, Springer-verlag, New York.
[18] Fang Gensun, Ye Peixin. (2003). Probabilistic and average linear widths of Sobolev space with Gaussian measure. J. Complexity, 19, 73-84.
[19] Guanggui Chen, Gensun Fang. (2004). Probabilistic and average widths of multivariate Sobolev spaces with mixed derivative equipped with the Gaussian measure. J. Complexity, 20, 858-875.
[20] Chen Guanggui, Fang Gensun. (2005). Linear widths of multivariate function spaces equipped with the Gaussian measure. J.Approx. Theory, 132, 77-96.
[21] Tan, X., Wang, Y., Sun, L., Shao, X., Chen, G. (2020). Gel’fand-N-width in probabilistic setting. Journal of Inequalities and Applications, (1), 1-14.
[22] Liqin Duan, Peixin Ye. (2020). Exact asymptotic orders of various randomized widths on Besov classes. Commu-nications on pure and applied analysis.Vol.19, No.8. 3957-3971.
[23] Fang Gensun, Ye Peixin. (2004). Probabilistic and average linear widths of Sobolev space with Gaussian measure in -norm, Constr. Approx., 20, 159-172.
[24] Fang Gensun, Qian Lixin. (2007). Optimization on Class of Operator Equations in the Probabilistic Case Setting, Sci. ChinaSer. A-Math, 50, 100-104.
[25] Liqin, Duan, Peixin, Ye. (2020). Randomized approximation numbers on Besov classes with mixed smoothness. International Journal of wavelets, multiresolution and information processing. 2050023-1-19.
[26] B. S. Kashin. (1978). The widths of certain finite-dimensional sets and classes of smooth functions. Izv. Akad. Nauk SSSS Ser.Mat. 41, 334-351; English transl., Math. USSR-Izv.11, 317-333.
[27] S. M. Nikol'skii. (1975). Approximation of Functions of Several Variables and Imbedding Theorems, Springer-Verlag, New York.
[28] A. Pinkus. (1985). n-Widths in Approximation Theory, Springer-Verlag, New York.