References
[1] J. Hadamard. (1893). Resolution d’ une question relative aux determinants, Bulletin des Sciences mathematiques (1893), 17: 240-24.
[2] J. Day and B. Peterson. (1988). Growth in Gaussian elimination. Amer. Math. Monthly, 95(1988), 489-513.
[3] F. Szollosi. (2010). Exotic Complex Hadamard matrices and their equiralence. Cryptogr. Commun., 2, (2010), 187-198.
[4] C. W. Cryer. (1968). Pivot size in Gaussian Elimination. Numer. Math., 12(1968), 335-346.
[5] Spectrum of the determinant function. http://www.indiana.edu/ maxdet/spectrum.html.
[6] N. Metropolis. (1971). Spectra of determinant values in (0,1) matrices. In A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory: Proceedings of the Science Research Atlas Symposium No. 2 held at Oxford, 18-23 August, 1969, Academic Press, London, 1971, 271-276.
[7] R. Craigen. (1990). The range of the determinant function of a set of n×n (0,1)-Matrices. Journal of Combinatorial Mathematics and Combinatorial Computing, Vol. 8 (1990), 161-171.
[8] M. Z ̆ivkovic'. (2006). Classification of small (0,1) matrices. Linear Algebra Appl., 414(2006), 1, 310-346.
[9] W. P. Orrick. (2005). The maximal {-1, 1}-determinant of order 15. Metrika, 62(2005), 195-219.
[10] Horn, R. A., Johnson, C. R. (1985). Matrix Analysis. Cambridge University Press: Cambridge, 1985.
[11] Geramita, A. V., Seberry, J. (1979). Orthogonal Designs: Quadratic Forms and Hadamard Matrices Morcel Dekker, New York, Basel, 1979.
[12] C. Krattenthaler. (2005). Advanced determinant calculus: A complement. Linear Algebra Appl., 411(2005), 68-166.
[13] C. M. Ballantine, S. M. Frechette, and J. B. Little. (2005). Determinants associated to zeta matrices of posets. Linear Algebra Appl., 411(2005), 364-370.
[14] C. Kravvaritis, M. Mitrouli. (2007). Evaluation of minors associated to weighing matrices. Linear Algebra and its Appl., Vol. 426(2007), 774-809.
[15] J. Seberry, T. Xia, C. Koukouvinos, and M. Mitrouli. (2003). The maximal determinant and subdeterminants of ±1 matrices. Linear Algebra Appl., 373(2003), 297-310.
[16] L. N. Trefethen and D. Bau, III. (1997). Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[17] C. Wenchang. (2006). The Faà di Bruno formula and determinant identities. Linear Multilinear Algebra, 54(2006), 1-25.
[18] J. Williamson. (1946). Determinants whose elements are 0 and 1. Amer. Math. Monthly, 53(1946), 427-434.
[19] Egan, R., Flannery, D. L. (2017). Automorphisms of generalized Sylvester Hadamard matrices. Discrete Math., 340 (2017), no. 3, 516-523.
[20] Mitrouli, M., Turek, O. (2018). Determinantal Properties of Generalized Circulant Hadamard Matrices. Electronic Journal of Linear Algebra, 34: 639-651, 2018.