References
[1] Agarwal, R. P. and Gupta, V. (2012). On q-analogue of a complex summation integral type operators in compact disks. J. Ineq.. Appl., 2012(1), Art 111.
[2] Gupta, V. and Maheshwari, P. (2019). Approximation with certain Post-Widder operators. Publications De L’institut Mathematiqu e, 105(119), 131-136.
[3] Sharma, P. M. (2021). Iterative combinations for Srivastava-Gupta operators. Asian European J. of Math., 14(7), 2150108, p. 10.
[4] Sharma, P. M. (2015). On Modified Srivastava-Gupta Operators. Filomat, 29: 6, 1173-1177.
[5] Sharma, P. M. and Abid, M. (2020) Approximation by (p,q) Szász-Beta-Stancu operators, Arab. J. Math., 9, 191-200.
[6] Maheshwari, P. and Sharma, D. (2012). Approximation by q-Baskakov-Beta-Stancu operators. Rend. Circ. Mat. Palerm, 61, 297-305.
[7] Sharma, P. (2021). Statistical convergence estimates for (p,q)-Baskakov-Durrmeyer type operators. Nepal J. of Math. Sciences, 2(2), 125-130.
[8] Aral, A., Inoan, D., and Rasa, I. (2019). On difference of linear positive operators. Analy. And Math. Phy., 9, 1227-1239.
[9] Acu, M., Tunca, G., and Rasa, I. (2021). Difference of positive linear operators on surplices. J. of functional spaces, p. 11. http://doi.org/10.1155/2021/5531577.
[10] Gupta, V. and Tachev, G. (2019). A note on difference of two linear positive operators. Constru. Math. Analy., 2(1), 1-7.
[11] Aral, A. and Gupta, V. (2016). Direct estimates for Lupas Durrmeyer operators. Filomat, 30, 191-199.
[12] Lupas, A. (1995). The approximation by means of some linear positive operators. Math. Research, 86, 201-230.
[13] Abel, U. and Ivan, M. (2007). On a generalization of an approximating operator defined by A. Lupas. General Math., 15, 21-34.
[14] Lain, B. Y. (2017). Approximation properties of the modified Lupas-Kantorovich type operators. MATEC Web of Conferences, 139, 00091. DOI: 10.1051/matecconf/20171390009.
[15] Gupta, V., Rassias, T. M., and Pandey, E. (2017). On genuine Lupas-Beta operators and modulus of continuity. Int. J. Nonlinear Anl. And Appl., 8(1), 23-32.
[16] Qasim, M., Khan, A., and Abbas, Z. (2021). A new construction of Lupas operators and its approximation proper-ties. Advances in Diff. Eqs., 51. http://doi.org/10/1186/s13662-020-03143-5.
[17] Agratini, O. (1999). On a sequence of linear positive operators. Facta Universitatis (Nis), Ser. Math. Inform., 14, 41-48.
[18] Gupta, V. (2019). On difference of operators with applications to Szasz type operators. Rivista de. La. Real Aca. De. Cie. Exactas, Fiscas Y, Naturales. Series A. mate., 113, 2059-2071.