References
[1] Podlubny, I. (1999). Fractional Differential Equations: An Introduction to Fractional Galerkin Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. 198, Academic Press, San Diego, USA.
[2] Kilbas, A. A., Srivastava, H. M., and Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations. Elsevier B.V, Library of Congress.
[3] Diethelm, K. (2004). The Analysis of Fractional Differential equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Germany, Heidelberg Dordrecht London New York.
[4] Oldham, K. B. and Spanier, J. (1974). Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press Inc, New York.
[5] Herrmann, R. (2014). Fractional Calculus. Germany-World. Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224.
[6] Li, C. and Zeng, F. (2015). Numerical Methods for Fractional Calculus. CRC Press, London, New York.
[7] Keskin, A. U. (2019). Boundary Value Problems for Engineers. Springer Nature Switzerland AG.
[8] Islam, M. S. and Shirin, A. (2011). Numerical solutions of a class of second order boundary value problems on using Bernoulli Polynomials. Appl Math, 2, 1059-1067.
[9] Al-Refai M., Ali H. M. and I. Syam M. (2014). An Efficient Series Solution for Fractional Differential Equations. Hindawi Publishing Corporation, Abstract and Applied Analysis, Article ID 891837, 7 pages.
[10] Mohammadi F. and Mohyud-Din S. T. (2016). A fractional-order Legendre collocation method for solving the Bagley-Torvik equations. Advances in Difference Equations, 2016: 269.
[11] Cheng, J. and Chu, Y. (2011). Solution to the Linear Fractional Differential Equation Using Adomian decomposition Method. Mathematical Problems in Engineering, Article ID 587068, 14 pages.
[12] Ruman, U. and Islam, M. S. (2020). Numerical Solutions of Linear Fractional Order BVP by Galerkin Residual Method with Differentiable Polynomial. Appl. and Comput. Math., 9(2), 20-25.
[13] Secer, A., Alkan, S., Akinlar, M. A., and Bayram, M. (2013). Sinc-Galerkin method for approximate solutions of fractional order boundary value problems. Secer et al., Boundary value problems.
[14] Pedas, A. and Tamme, E. (2012). Piecewise polynomial collocation for linear boundary value problems of fractional differential equations. J. Comput. and Appl. Math., 236 (2012), 3349-3359.
[15] El-Ajou, A., Arqub, O. A., and Momani, S. (2013). Solving fractional two-point boundary value problems using continuous ana-lytic method. Ain Shams Engineering Journal, 539-547.
[16] Stanek, S. (2013). Two-point boundary value problems for the generalized Bagley- Torvik fractional differential equations. Cent. Eur. J. Math., 11(3), 574-593.
[17] Emadifar, H. and Jalilian, R. (2020). An exponential spline approximation for fractional Bagley-torvik equation. Emadifar and Jalilian Boundary Value Problems, 2020: 20.
[18] Hamasalh, F. K. and Muhammed, P. O. (2017). Computational Non-Polynomial Spline Function for Solving Fractional Bagley-Torvik Equation. Math. Sci. Lett., 6, No. 1, 83-87.
[19] Viswanadham, K. N. S. K., Krishna, P. M., and Koneru, R. S. (2010). Numerical Solutions of Fourth Order Boundary Value Problems by Galerkin Method with Quintic B-Splines. Int. J. Nonlinear Sci., 10(2), 222-230.
[20] Hossain, M. B. and Islam, M. S. (2014). Numerical Solutions of General Fourth Order Two Point Boundary Value Problems by the Galerkin Method with Legendre Polynomials. Dhaka Univ. J. Sci., 62(2): 103-108.
[21] Zahra, W. K. and Elk holy, S. M. (2012). Spline Solution for Fourth Order Fractional Integro-Differential Equation. J. Fract. Cal. and Appl., 3(17), 1-13.
[22] Akram, G. and Tariq, H. (2017). Quintic Spline Collocation Method for Fractional Boundary Value Problem. Journal of the association of Arab Universities for Basic and Applied Sciences, 23, 57-65.
[23] Akgül, A. and Akgül, E. K. (2019). A Novel Method for Solutions of Fourth-Order Fractional Boundary Value Problems. Fractal and Fractional, 3, 33; doi: 10.3390/fractalfract3020033.
[24] Khalid, N., Abbas, M., and Iqbal, M. K. (2019). Non-polynomial quintic spline for solving fourth-order fractional boundary value problems involving product terms. Appl. Math. And Comput., 349, 393-407.
[25] Rahman, M. A., Islam, M. S., and Alam, M. M. (2012). Numerical Solutions of Volterra Integral Equations Using Laguerre Polynomials. J. Sci. Res., 4(2), 357-364.
[26] Shirin, A. and Islam, M. S. (2010). Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials. J. Sci. Res., 2(2), 264-272.
[27] Rajagopal, N., Balaji, S., Seethalakshmi, R., and Balaji, V. S. (2020). A new numerical method for fractional order Volterraintegro differential equations. Ain Shams Eng. J., 11, 171-177.
[28] Mohamed, D. SH. (2014). Numerical Solution of Fractional Singular Integro-Differential Equations by using Taylor series expansion. J. Pure and Appl. Math., 12(2), 129-143.
[29] Jani, M., Bhatta, D., and Javadi, S. (2017). Numerical solution of fractional integro-differential equations with nonlocal conditions. Application and Appl. Math., 12(1), 98-111.
[30] Momani, S. and Noor, M. A. (2006). Numerical methods for fourth-order fractional integro-differential equations. Appl. Math. Comput., 182, 754-760.
[31] Lewis, P. E. and Ward, J. P. (1991). The Finite Element Method, Principles and applications. Addison-Wesley Publishers Ltd.