References
[1] F. Ebacher. (2017). “Analyse du refroidissement par film de la paroi de bout de pales d’une turbine en céramique à configuration renversée” (Film cooling analysis of the blade end wall of an inverted ceramic turbine). M.Sc. Theses, 2017.
[2] Goldstein, R. J., Eckert, E. R. G., Eriksen, V. L., and Ramsey, J. W. (1970). “Film Cooling Following Injection Through Inclined Circular Tubes.” Israel Journal of Technology, Vol. 8, No. 1-2, pp. 145-154.
[3] Mehendale, A. B., Han, J. C., and Ou, S. (1991). “Influence of High Mainstream Turbulence on Leading Edge Heat Transfer.” ASME Journal of Heat Transfer, Vol. 113, November 1991, pp. 843-850.
[4] Honami, S., Shizawa, T., and Uchiyama, A. (1994). “Behavior of the Laterally Injected Jet in Film Cooling: Measurements of Surface Temperature and Velocity/Temperature Field Within the Jet.” ASME Journal of Turbomachinery, Vol. 116, pp. 106-112.
[5] Schmidt, D. L., Sen, B. (1996). “Film Cooling with Compound Angle Holes: Adiabatic Effectiveness.” ASME Journal of Turbomachinery, Vol. 118, pp. 807-813.
[6] Ligrani, P. M., Wigle, J. M., Ciriello, S., and Jackson, S. W. (1994). “Film-cooling From Holes with Compound Angle Orientations: Part 1- Results Downstream of Two Staggered Rows of Holes with 3d Spanwise Spacing.” ASME Journal of Heat Transfer, Vol. 116, No. 2, 1994, pp. 341-352.
[7] Ligrani, P. M., Wigle, J. M., and Jackson, S. W. (1994). “Film-cooling From Holes with Compound Angle Orientations: Part 2- Results Downstream of a Single Row of Holes with 6d Spanwise Spacing.” ASME Journal of Heat Transfer, Vol. 116, No. 2, 1994, pp. 353-362.
[8] Bunker, R. S. (2002). Film Cooling Effectiveness Due to Discrete Holes Within Transverse Surface Slots, Proceedings IGTI Turbo Expo, Amsterdam, The Netherlands, ASME Paper No.GT-2002-30178.
[9] S. Baheri and B. A. Jubran. (2012). The Effect of Turbulence Intensity on Film Cooling of Gas Turbine Blade from Trenched Shaped Holes. J. Heat & Mass Transfer, 05/2012, 48(5).
[10] Wang, T., Chintalapati, S., Bunker, R.S., and Lee, C. P. (2000). “Jet Mixing in a Slot.” Experimental Thermal and Fluid Science, Vol. 22, pp. 1-17.
[11] Lu, Y., Nasir, H., and Ekkad, S.V. (2005). “Film Cooling from a Row of Holes Embedded in Transverse Slots.” ASME Paper IGTI2005-68598.
[12] Kebir, F. and Azzi, A. (2018). Study of wave number effect in wavy plate for improving the film cooling effectiveness at spanwise direction. Numerical Heat Transfer, Part A: Applications, 73(6), 408-427.
[13] Ben Ali Kouchih, F., Boualem, K., Grine, M., and Azzi, A. (2020). The Effect of an Upstream Dune-Shaped Shells on Forward and Backward Injection Hole Film Cooling. Journal of Heat Transfer, 142(12), 122302.
[14] Gritsch, M., Schulz, A., and Wittig, S. (1998). “Heat Transfer Coefficient Measurements of Film Cooling Holes with Expanded Slots.” American Society of Mechanical Engineers, ASMEPaper 98-GT-28, June 1998.
[15] Gritsch, M., Schulz, A., and Wittig, S. (2016). “Adiabatic Wall Effectiveness Measurements of Film Cooling Holes with Expanded Exits.” ASME Journal of Turbomachinery, Vol. 120, No. 3, 1998, pp. 549-556. Han, C., Chi, Z., Ren, J., and Jiang, H. (2016). GT2013-94561. 1-11.
[16] Hassan, H. and Abdullah, K. (2017). Combined-hole film cooling with the application of double flow control devices. MATEC Web of Conferences, 135, 1-9.
[17] Wang, J., Tian, K., Luo, J., and Sundén, B. (2019). Effect of hole configurations on film cooling performance. Numerical Heat Transfer; Part A: Applications, 75(11), 725.
[18] Zaman, K., Rigby, D., and Heidmann, J. (2010). “Experimental Study of an Inclined Jet-in-Cross-Flow Interacting with a Vortex Generator.” AIAA Paper No. 2010-88.
[19] Shinn, A. F. and Vanka, S. P. (2013). “Large Eddy Simulations of Film-Cooling Flows with a Micro-Ramp Vortex Generator.” ASME J. Turbomach., 135(1), p. 011004.
[20] Zhou, W. and Hu, H. (2016). “Improvements of Film Cooling Effectiveness by Using Barchan Dune Shaped Ramps.” Int. J. Heat Mass Transfer, 103, pp. 443-456.
[21] Zhou, W., and Hu, H. (2017). “A Novel Sand-Dune-Inspired Design for Improved Film Cooling Performance.” Int. J. Heat Mass Transfer, 110, pp. 908-920.
[22] Zhang, X. Z. and Hassan, I. (2006). Film cooling effectiveness for an advanced-louver cooling scheme for gas turbines. Journal of Thermophysics and Heat Transfer, 20(4), 754-763.
[23] T. F. Frict and A. Roshko. (1994). Vortical structure in the wake of a transverse jet. J Fluid Mech, pp. 1-47 (1994).
[24] MilošIlak, Philipp Schlatter, Shervin Bagheri, and Dan, S. (2012). Henningson, Bifurcation and stability analysis of a jet in crossflow: onset of global instability at a low velocity ratio, pp. 94-121, 2012.
[25] D. R. Getsinger, L. Gevorkyan, O. I. Smith, and A. R. Karagozian. (2014). Structural and stability characteristics of jets in crossflow. J. Fluid Mech., vol. 760, pp. 342-367, 2014.
[26] Sinha, D. Bogard and N. Crawford. (1991). Film Cooling Effectiveness Downstream of a Single Row of Holes with Variable Density Ratio. J. Turbomach., vol. 113, pp. 442-449, 1991.