

ISSN Online: 2576-0653 ISSN Print: 2576-0645

Weighted Approximation Properties of New (*p*, *q*)—Analogue of Balazs Szabados Operators

Hayatem Hamal^{1,2,*}, Pembe Sabancıgil^{1,2}

¹Department of Mathematics, Faculty of Education Janzour, Tripoli University, Tripoli, Libya. ²Department of Mathematics, Eastern Mediterranean University, Gazimagusa, North Cyprus.

How to cite this paper: Hayatem Hamal, Pembe Sabancıgil. (2021) Weighted Approximation Properties of New (p, q)—Analogue of Balazs Szabados Operators. Journal of Applied Mathematics and Computation, 5(4), 373-381. DOI: 10.26855/jamc.2021.12.016

Received: November 17, 2021 Accepted: December 12, 2021 Published: December 30, 2021

*Corresponding author: Hayatem Hamal, Department of Mathematics, Faculty of Education Janzour, Tripoli University, Tripoli, Libya; Department of Mathematics, Eastern Mediterranean University, Gazimagusa, North Cyprus. Email: hafraj@yahoo.com

Abstract

Korovkin-type theorems provide simple and useful tools for finding out whether a given sequence of positive linear operators, acting on some function space is an approximation processor, equivalently, converges strongly to the identity operator. These theorems exhibit a variety of test subsets of functions which guarantee that the approximation property holds on the whole space provided it holds on them. These kinds of results are called "Korovkin-type theorems" which refers to P.P. Korovkin who in 1953 discovered such a property for the functions 1, x and x^2 in the space C([0,1]). After this discovery, several mathematicians have undertaken the program of extending Korovkin's theorems in many ways and to several settings. Such developments delineated a theory which is nowadays referred to as Korovkin-type approximation theory. In this paper, we study weighted approximation properties of new (p, q) - analogue of the Balázs-Szabados operators by using the weighted modulus of continuity and we give a Korovkin type theorem for weighted approximation.

Keywords

(p, q)- analysis, moments, Bernstein operators, Balázs-Szabados operators, (p, q)-Balázs-Szabados operators, weighted modulus of continuity

1. Introduction

In the year 1975, Catherine Balázs defined and studied Bernstein type rational functions as follows (see [1]),

$$R_{n}(f;x) = \frac{1}{(1+a_{n}x)^{n}} \sum_{k=0}^{n} f\left(\frac{k}{b_{n}}\right) {\binom{n}{k}} {(a_{n}x)^{k}} \qquad (n = 1, 2, ...),$$

where f is a real valued and single valued function which is defined on the unbounded interval $[0,\infty)$, a_n and b_n are real numbers which are selected suitably and do not depend on x. Seven years later in 1982, Catherine Balázs and J. Szabados studied together to improve the estimation in [2] by selecting suitable a_n and b_n under some restrictions for f(x).

Recently, generalizations of Balázs-Szabados operators based on the *q*-integers are studied by Hayatem Hamal and Pembe Sabancigil ([3]), Ogün Doğru ([4]) and Esma Yıldız Özkan ([5]). Approximation properties of the *q*-Balázs-Szabados complex operators are studied by Nazım I. Mahmudov in [6] and by Nurhayat Ispir and Esma Yıldız Özkan in [7].

Moreover, the fast rise of (p,q)- analysis has encouraged many authors in this subject to discover different generalizations and examine their approximation properties. In the last seven years, Mohammad Mursaleen et al. introduced and studied (p,q)- analogue of Bernstein operators, (p,q)- analogue of Bernstein-Stancu operators, Bernstein-Kantorovich operators based on (p,q)- calculus, (p,q)- Lorentz polynomials on a compact disc, Bleimann-Butzer-Hahn operators defined by (p,q)- integers and (p,q)- analogue of two parametric Stancu-Beta operators (see [8]-[14]). (p,q)- generalization of Szász-Mirakyan operators is studied by Tuncer Acar (see [15]), Kantorovich modification of (p,q)-Bernstein operators is studied by Tuncer Acar and Ali Aral (see [16]). A generalization of q-Balázs-Szabados operators based on (p,q)- integers is studied by Esma Yıldız Özkan and Nurhayat Ispir in [17]. Hayatem Hamal and Pembe Sabancigil introduce a new (p,q)- generalization of q-Balázs-Szabados operators as follows (see [18]),

$$R_{n,p,q}(f,x) = \frac{1}{p^{n(n-1)/2}} \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix}_{p,q} p^{k(k-1)/2} f\left(\frac{p^{n-k} \begin{bmatrix} k \end{bmatrix}_{p,q}}{b_n}\right) \left(\frac{a_n x}{1+a_n x}\right)^k \prod_{j=0}^{n-k-1} \begin{bmatrix} p^j - q^j \frac{a_n x}{1+a_n x} \end{bmatrix}$$

where $a_n = [n]_{p,q}^{\beta-1}$, $b_n = [n]_{p,q}^{\beta}$, $0 < \beta \le \frac{2}{3}$, $n \in \Box$, $x \ge 0$, f is a real-valued function defined on the unbounded interval $[0,\infty)$.

In this paper, we study weighted approximation properties of new (p,q)- analogue of the Balázs-Szabados operators by using the weighted modulus of continuity and we give a Korovkin type theorem for weighted approximation.

Before giving the main results for the mentioned operators above, we present some important notations and some basic definitions of (p,q)- analysis. For any two non-negative numbers p, q and a non-negative integer n, the (p,q)integer of the number n is defined as follows:

$$[n]_{p,q} = p^{n-1} + p^{n-2}q + p^{n-3}q^2 + \dots + pq^{n-2} + q^{n-1} = \begin{cases} \frac{p^n - q^n}{p - q} & \text{if } p \neq q \neq 1\\ np^{n-1} & \text{if } p = q \neq 1\\ [n]_q & \text{if } p = 1\\ n & \text{if } p = q = 1 \end{cases}$$

The (p,q)-factorial is defined by $[n]_{p,q} != \prod_{k=1}^{n} [k]_{p,q}$, for $n \ge 1$ and particularly we have $[0]_{p,q} != 1$. (p,q)-binomial cofficient is defined by

$$\begin{bmatrix} n \\ k \end{bmatrix}_{p,q} = \frac{\begin{bmatrix} n \end{bmatrix}_{p,q}!}{\begin{bmatrix} k \end{bmatrix}_{p,q}! \begin{bmatrix} n-k \end{bmatrix}_{p,q}!} , \ 0 \le k \le n,$$

and the formula of (p,q)-binomial expansion is defined by

$$(ax+by)_{p,q}^{n} = \sum_{k=0}^{n} p^{\frac{(n-k)(n-k-1)}{2}} q^{\frac{k(k-1)}{2}} a^{n-k} b^{k} x^{n-k} y^{k}$$
$$= (ax+by)(pax+qby)(p^{2}ax+q^{2}by)...(p^{n-1}ax+q^{n-1}by).$$

2. Main Results

Firstly we consider the following three spaces:

 $B_2[0,\infty) = \left\{ f: [0,\infty) \to R: \left| f(x) \right| \le M_f (1+x^2) \right\}, \text{ where } M_f \text{ is a constant depending on } f.$

$$C_2[0,\infty) = B_2[0,\infty) \cap C[0,\infty) \quad \text{and} \quad C_2^*[0,\infty) = \left\{ f \in C_2[0,\infty) : \lim_{x \to \infty} \frac{f(x)}{1+x^2} < \infty \right\}.$$

The norm on the space $C_2^*[0,\infty)$ is shown as $\|f(x)\|_2 = \sup_{x\in[0,\infty)} \frac{f(x)}{1+x^2}$.

The modulus of continuity of f on a closed and bounded interval [0,b], b > 0 is defined as follows: $\omega_b(f,\delta) = \sup_{|t-x| \le \delta} \sup_{x \in [0,b]} |f(t) - f(x)|$. It is obvious that for a function $f \in C_2[0,\infty)$, the modulus of continuity $\omega_b(f,\delta)$ tends to zero as $\delta \to 0$.

Definition 1 [18] Let $0 < q < p \le 1$, we introduce a new (p,q)- analogue of Balázs-Szabados operators by

$$R_{n,p,q}(f,x) = \frac{1}{p^{n(n-1)/2}} \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix}_{p,q} p^{k(k-1)/2} f\left(\frac{p^{n-k} \begin{bmatrix} k \end{bmatrix}_{p,q}}{b_n}\right) \left(\frac{a_n x}{1+a_n x}\right)^k \prod_{j=0}^{n-k-1} \left(p^j - q^j \frac{a_n x}{1+a_n x}\right)^{j-1} \left(\frac{a_n x}{1+a_n x}\right)^{j-1} \left(\frac{a_n$$

where $a_n = [n]_{p,q}^{\beta-1}$, $b_n = [n]_{p,q}^{\beta}$, $0 < \beta \le \frac{2}{3}$, $n \in \Box$, $x \ge 0$, f is a real-valued function which is defined on the unbounded interval $[0,\infty)$.

In the following theorem we give the rate of convergence for the new (p,q)- analogue of Balázs-Szabados operators, $R_{n,p,q}(f,x)$.

Theorem 1 ([19], [20]). Let $f \in C_2[0,\infty), 0 < q < p \le 1$ and $\omega_{b+1}(f,\delta)$ be the modulus of continuity on $[0,b+1] \subset [0,\infty)$, where b > 0. Then for every $n \in \Box$, we have

$$\left\|R_{n,p,q}\left(f,x\right)-f\left(x\right)\right\|_{\left[0,b\right]} \leq L+2\omega_{b+1}\left(f,\delta\right)$$

where L is a positive constant.

Proof. For $x \in [0,b]$ and t > b+1, since t-x > 1 we have

$$\left| f(t) - f(x) \right| \le M_f \left(2 + x^2 + t^2 \right) \le M_f \left(2(t-x)^2 + 3x^2 (t-x)^2 + 2(t-x)^2 \right)$$
$$\le M_f \left(4 + 3x^2 \right) (t-x)^2 \le 4M_f \left(1 + b^2 \right) (t-x)^2.$$
(1)

For $x \in [0, b]$, t < b+1, we have

$$\left|f\left(t\right)-f\left(x\right)\right| \le \omega_{b+1}\left(f,\left|t-x\right|\right) \le \left(1+\frac{\left|t-x\right|}{\delta}\right)\omega_{b+1}\left(f,\delta\right).$$
(2)

So, with $\delta > 0$, $x \in [0, b]$, $t \ge 0$ and by the inequalities (1) and (2) we may write

$$\left|f\left(t\right)-f\left(x\right)\right| \leq 4M_{f}\left(1+b^{2}\right)\left(t-x\right)^{2}+\left(1+\frac{\left|t-x\right|}{\delta}\right)\omega_{b+1}\left(f,\delta\right),$$

by applying $R_{n,p,q}(f,x)$ to the above inequality and by the well known Cauchy-Schwarz Inequality, we obtain

$$\left| R_{n,p,q}(f,x) - f(x) \right| \le 4M_f \left(1 + b^2 \right) R_{n,p,q} \left(\left(t - x \right)^2, x \right) + \left(1 + R_{n,p,q} \left(\frac{|t - x|}{\delta}, x \right) \right) \omega_{b+1}(f,\delta),$$

$$\left| R_{n,p,q}(f,x) - f(x) \right| \le 4M_f \left(1 + b^2 \right) R_{n,p,q} \left(\left(t - x \right)^2, x \right) + \left(1 + \frac{1}{\delta} \left(R_{n,p,q} \left(\left(t - x \right)^2, x \right) \right)^{\frac{1}{2}} \right) \omega_{b+1}(f,\delta).$$

Now by using Lemma 3 in [18], we may write

 $\left|R_{n,p,q}\left(f,x\right) - f\left(x\right)\right| \le 4M_{f}\left(1+b^{2}\right)D_{1}\left(1+x\right)^{2} + \left(1+\frac{1}{\delta}\sqrt{D_{1}}\left(1+x\right)\right)\omega_{b+1}\left(f,\delta\right), \text{ where } D_{1} \text{ is a positive constant.}$ For $x \in [0,b]$, we have the following explicit formula:

$$|R_{n,p,q}(f,x) - f(x)| \le 4M_f (1+b^2) D_1 (1+b)^2 + \left(1 + \frac{1}{\delta} \sqrt{D_1} (1+b)\right) \omega_{b+1}(f,\delta).$$

Then, by taking $\delta = \sqrt{D_1} (1+b)$, $L = (4M_f + D_1)$ we get the desired result.

In the following theorem, we give Korovkin's approximation property for the new (p,q)-analogue of Balázs-Szabados operators.

Theorem 2. Assume that $q = q_n$, $p = p_n$ are sequences such that $0 < q_n < p_n \le 1$ and $q_n \to 1$ as $n \to \infty$. Then for each $f \in C_2^*[0,\infty)$ we have $\lim_{n\to\infty} \left\| R_{n,p_n,q_n}(f,x) - f(x) \right\|_2 = 0$.

Proof. By using the Korovkin theorem for weighted approximation (see [21], [22], [23]), it is sufficient to show that

$$\lim_{n \to \infty} \left\| R_{n, p_n, q_n} \left(t^m; x \right) - x^m \right\|_2 = 0, \text{ for } m = 0, 1, 2.$$
(3)

Since $R_{n,p_n,q_n}(1;x) = 1$, (3) holds for m = 0. Now by Lemma 2 in [18], we have

$$R_{n,p_{n},q_{n}}(t;x) - x = \frac{x}{1 + a_{n,p_{n},q_{n}}x} - x = -\frac{a_{n,p_{n},q_{n}}x^{2}}{\left(1 + a_{n,p_{n},q_{n}}x\right)}.$$
 By using triangle inequality, we get
$$\left|R_{n,p_{n},q_{n}}(t;x) - x\right| \le \frac{a_{n,p_{n},q_{n}}x^{2}}{\left(1 + a_{n,p_{n},q_{n}}x\right)}.$$

Now we may write

$$\left\|R_{n,p_{n},q_{n}}\left(t;x\right)-x\right\|_{2} \leq \sup_{0 \leq x < \infty} \frac{1}{1+x^{2}} \left\{\frac{a_{n,p_{n},q_{n}}x^{2}}{\left(1+a_{n,p_{n},q_{n}}x\right)}\right\} \leq a_{n,p_{n},q_{n}} \cdot \sup_{0 \leq x < \infty} \frac{x^{2}}{1+x^{2}\left(1+a_{n,p_{n},q_{n}}x\right)}$$

By taking the limit overall the last inequality, we have

$$\lim_{n\to\infty} \left\| R_{n,p_n,q_n}\left(t;x\right) - x \right\|_2 \le \lim_{n\to\infty} a_{n,p_n,q_n} \cdot 1 = 0.$$

Again by using Lemma 2 in [18], we have

$$R_{n,p_n,q_n}(t^2;x) - x^2 = \frac{p_n^{n-1}}{a_{n,p_n,q_n}b_{n,p_n,q_n}} \left(\frac{a_{n,p_n,q_n}x}{1+a_{n,p_n,q_n}x}\right) + \frac{q_n[n-1]_{p_n,q_n}}{a_{n,p_n,q_n}b_{n,p_n,q_n}} \left(\frac{a_{n,p_n,q_n}x}{1+a_{n,p_n,q_n}x}\right)^2 - x^2 ,$$
$$= \frac{p_n^{n-1}}{a_{n,p_n,q_n}b_{n,p_n,q_n}} \left(\frac{a_{n,p_n,q_n}x}{1+a_{n,p_n,q_n}x}\right) + \left\{\frac{q_n[n-1]_{p_n,q_n}}{[n]_{p_n,q_n}}\frac{1}{(1+a_{n,p_n,q_n}x)^2} - 1\right\} x^2.$$

Therefore,

$$\left|R_{n,p_{n},q_{n}}\left(t^{2};x\right)-x^{2}\right| \leq \frac{p_{n}^{n-1}}{a_{n,p_{n},q_{n}}b_{n,p_{n},q_{n}}}\left(\frac{a_{n,p_{n},q_{n}}x}{1+a_{n,p_{n},q_{n}}x}\right) + \left\{1-\frac{q_{n}\left[n-1\right]_{p_{n},q_{n}}}{\left[n\right]_{p_{n},q_{n}}}\frac{1}{\left(1+a_{n,p_{n},q_{n}}x\right)^{2}}\right\}x^{2}$$

Then, we have

$$\begin{aligned} \left\| R_{n,p_{n},q_{n}}\left(t^{2};x\right) - x^{2} \right\|_{2} &\leq \frac{p_{n}^{n-1}}{b_{n,p_{n},q_{n}}} \sup_{0 \leq x < \infty} \frac{x}{\left(1 + x^{2}\right)\left(1 + a_{n,p_{n},q_{n}}x\right)} + \sup_{0 \leq x < \infty} \frac{x^{2}}{\left(1 + x^{2}\right)} - \sup_{0 \leq x < \infty} \frac{x^{2}}{\left(1 + x^{2}\right)\left(1 + a_{n,p_{n},q_{n}}x\right)^{2}} \\ &- \frac{P_{n}^{n-1}}{\left[n\right]_{p_{n},q_{n}}} \sup_{0 \leq x < \infty} \frac{x^{2}}{\left(1 + x^{2}\right)\left(1 + a_{n,p_{n},q_{n}}x\right)^{2}}.\end{aligned}$$

Now by taking the limit overall the last inequality, we have

$$\begin{split} \lim_{n \to \infty} \left\| R_{n, p_n, q_n} \left(t^2; x \right) - x^2 \right\|_2 &\leq \lim_{n \to \infty} \frac{p_n^{n-1}}{b_{n, p_n, q_n}} \sup_{0 \le x < \infty} \frac{x}{\left(1 + x^2 \right) \left(1 + a_{n, p_n, q_n} x \right)} + \lim_{n \to \infty} \sup_{0 \le x < \infty} \frac{x^2}{\left(1 + x^2 \right)} \\ &- \lim_{n \to \infty} \sup_{0 \le x < \infty} \frac{x^2}{\left(1 + x^2 \right) \left(1 + a_{n, p_n, q_n} x \right)^2} - \lim_{n \to \infty} \frac{P_n^{n-1}}{\left[n \right]_{p_n, q_n}} \sup_{0 \le x < \infty} \frac{x^2}{\left(1 + x^2 \right) \left(1 + a_{n, p_n, q_n} x \right)^2}. \end{split}$$

Hence,

$$\lim_{n\to\infty}\left\|R_{n,q_n}^*\left(t^2;x\right)-x^2\right\|_2=0.$$

Now, we present the next theorem to approximate all functions in the space $C_2^*[0,\infty)$. These types of results are given in [24] for locally integrable functions.

Theorem 3. Let $0 < q_n < p_n < 1$, $q_n \to 1$ as $n \to \infty$. Then for each $f \in C_2^*[0,\infty)$ and all $\upsilon > 0$, we have $\lim_{n \to \infty} \sup_{x \in [0,\infty)} \frac{\left| R_{n,p_n,q_n}(f,x) - f(x) \right|}{\left(1 + x^2\right)^{1+\upsilon}} = 0.$

$$\lim_{x \to \infty} \sup_{x \in [0,\infty)} \frac{\left| \sum_{x \in [0,\infty)} (y) - y \right|^{1+\psi}}{\left(1 + x^2 \right)^{1+\psi}} = 0.$$
Proof. Let $x_0 > 0$. Then
$$\sup_{x \in [0,\infty)} \frac{\left| R_{n,p_n,q_n} \left(f; x \right) - f \left(x \right) \right|}{\left(1 + x^2 \right)^{1+\psi}} = \sup_{x \le x_0} \frac{\left| R_{n,p_n,q_n} \left(f; x \right) - f \left(x \right) \right|}{\left(1 + x^2 \right)^{1+\psi}} + \sup_{x > x_0} \frac{\left| R_{n,p_n,q_n} \left(f; x \right) - f \left(x \right) \right|}{\left(1 + x^2 \right)^{1+\psi}} \\
\leq \left\| R_{n,p_n,q_n} \left(f; x \right) - f \left(x \right) \right\|_{\mathcal{L}_{[0,x_0]}} + \sup_{x \in [0,\infty)} \frac{\left| R_{n,p_n,q_n} \left(\left(1 + t^2 \right) f; x \right) - f \left(x \right) \right|}{\left(1 + x^2 \right)^{1+\psi}} \\
\leq \left\| R_{n,p_n,q_n} \left(f; x \right) - f \left(x \right) \right\|_{\mathcal{L}_{[0,x_0]}} + \left\| f \right\|_2 \sup_{x > x_0} \frac{\left| R_{n,p_n,q_n} \left(\left(1 + t^2 \right) f; x \right) - f \left(x \right) \right|}{\left(1 + x^2 \right)^{1+\psi}}.$$
(4)

Now, by definition of the norm of each function belonging to $C_2^*[0,\infty)$, we have

$$|f(x)| \le ||f||_2 (1+x^2)$$
, also we have $\sup_{x>x_0} \frac{|f(x)|}{(1+x^2)^{1+\nu}} \le \frac{||f||_2}{(1+x^2)^{\nu}} \le \frac{||f||_2}{(1+x_0^2)^{\nu}}$.

Let $\varepsilon > 0$. We can choose x_0 in such a way that

$$\frac{\left\|f\right\|_{2}}{\left(1+x_{0}^{2}\right)^{\nu}} < \frac{\varepsilon}{3}.$$
(5)

By Theorem 2, we get

$$\left\|f\right\|_{2} \lim_{n \to \infty} \frac{\left|R_{n, p_{n}, q_{n}}\left(\left(1+t^{2}\right); x\right)\right|}{\left(1+x^{2}\right)^{1+\nu}} = \frac{1+x^{2}}{\left(1+x^{2}\right)^{1+\nu}} \left\|f\right\|_{2} \le \frac{\left\|f\right\|_{2}}{\left(1+x^{2}\right)^{\nu}} \le \frac{\left\|f\right\|_{2}}{\left(1+x^{2}_{0}\right)^{\nu}} < \frac{\varepsilon}{3}.$$

By using Theorem 1, we can see that the first term of the inequality (4) implies that

$$\left\|R_{n,p_n,q_n}\left(f;x\right) - f\left(x\right)\right\|_{\mathcal{C}\left[0,x_0\right]} < \frac{\varepsilon}{3}, \qquad \text{as} \quad n \to \infty$$
(6)

By taking the limit over inequality (4) and combining inequalities (5) and (6), we get the desired result.

Next, we discuss the order of approximation of the functions $f \in C_2^*$ by the operators $R_{n,p,q}$ with the help of the following weighted modulus of continuity (see [25] and [26]).

The weighted modulus of continuity is defined by

$$\Omega_{2}(f;\delta) = \sup_{0 < h < \delta, x \in [0,\infty)} \frac{\left|f(x+h) - f(x)\right|}{1 + (x+h)^{2}}, \qquad \forall f \in C_{2}^{*}[0,\infty).$$

The weighted modulus of continuity and usual modulus of continuity have similar properties.

Lemma 1 ([26]). Let $f \in C_2^*[0,\infty)$. Then, we have the following:

- 1) $\Omega_2(f;\delta)$ is a monotonic increasing function of δ .
- 2) For each $f \in C_2^*$, $\lim_{\delta \to 0^+} \Omega_2(f; \delta)$.
- 3) For each $\lambda > 0$, $\Omega_2(f;\lambda\delta) \le (1+\lambda)\Omega_2(f;\delta)$.

In the following theorem we give the main convergence result which gives an expression of the approximation error with the operators $R_{n,p,q}$ using Ω_2 .

Theorem 4. Let $f \in C_2^*$, $0 < q_n < p_n < 1$ such that $q_n \to 1$ as $n \to \infty$. Then we have the following inequality

$$\sup_{x\in[0,\infty)}\frac{\left|R_{n,p_n,q_n}\left(f,x\right)-f\left(x\right)\right|}{\left(1+x^2\right)^{\frac{5}{2}}}\leq A_3\Omega_2\left(f,\sqrt{D_1}\right),$$

where, $A_3 = 2(1 + A_1 + A_2) > 0$ and $D_1 > 0$.

Proof. It is known that $R_{n,p_n,q_n}(1,x) = 1$, by monotonicity of R_{n,p_n,q_n} , we may write

$$\left|R_{n,p_{n},q_{n}}\left(f,x\right)-f\left(x\right)\right|\leq R_{n,p_{n},q_{n}}\left(\left|f\left(t\right)-f\left(x\right)\right|,x\right),$$

now, by using the definition of $\Omega_2(f;\delta)$ and (3) in the previous lemma we have

$$\left|f\left(t\right) - f\left(x\right)\right| \le \left(1 + \left(x + \left|t - x\right|\right)^{2}\right)\Omega_{2}\left(f, \left|t - x\right|\right)$$
$$\left|f\left(t\right) - f\left(x\right)\right| \le 2\left(1 + x^{2}\right)\left(1 + \left(t - x\right)^{2}\right)\left(1 + \frac{\left|t - x\right|}{\delta}\right)\Omega_{2}\left(f, \delta\right).$$

By using linearity and positivity properties of the operators R_{n,p_n,q_n} , we obtain

$$\begin{aligned} \left| R_{n,p_n,q_n} \left(f, x \right) - f \left(x \right) \right| &\leq 2 \left(1 + x^2 \right) \left\{ \left(1 + R_{n,p_n,q_n} \left(\left(t - x \right)^2, x \right) \right) \right. \\ &+ \left. R_{n,p_n,q_n} \left(\left(1 + \left(t - x \right)^2 \right) \frac{\left| t - x \right|}{\delta}, x \right) \right\} \Omega_2 \left(f, \delta \right). \end{aligned}$$

Applying the Cauchy-Schwarz inequality on the second term of the last inequality, we get

$$R_{n,p_{n},q_{n}}\left(\left(1+\left(t-x\right)^{2}\right)\frac{|t-x|}{\delta},x\right) \leq \left(R_{n,p_{n},q_{n}}\left(\left(\frac{|t-x|}{\delta}\right)^{2},x\right)\right)^{\frac{1}{2}} + \left(R_{n,p_{n},q_{n}}\left(t-x\right)^{4},x\right)^{\frac{1}{2}}\left(R_{n,p_{n},q_{n}}\left(\left(\frac{|t-x|}{\delta}\right)^{2},x\right)\right)^{\frac{1}{2}},x\right)^{\frac{1}{2}},x\right)^{\frac{1}{2}}$$

$$\left|R_{n,p_{n},q_{n}}\left(f,x\right) - f\left(x\right)\right| \leq 2\left(1+x^{2}\right)\left\{\left(1+R_{n,p_{n},q_{n}}\left(\left(t-x\right)^{2},x\right)\right) + \left(R_{n,p_{n},q_{n}}\left(\left(\frac{|t-x|}{\delta}\right)^{2},x\right)\right)^{\frac{1}{2}}\right\}$$

$$+ \left(R_{n,p_{n},q_{n}}\left(t-x\right)^{4},x\right)^{\frac{1}{2}}\left(R_{n,p_{n},q_{n}}\left(\left(\frac{|t-x|}{\delta}\right)^{2},x\right)\right)^{\frac{1}{2}}\right\}\Omega_{2}\left(f,\delta\right),$$

$$(7)$$

On the other hand, in [18], by using (12) and (13) in Lemma 4, we have the following inequalities

$$\left(1+R_{n,p_{n},q_{n}}\left(\left(t-x\right)^{2},x\right)\right) \leq A_{1}\left(1+x^{2}\right), \quad A_{1}>0.$$
 (8)

$$\left(R_{n,p_n,q_n}\left(\left(t-x\right)^4,x\right)\right)^{\frac{1}{2}} \le \left(\frac{1}{b_n^2}D_2\left(1+x^2\right)\right)^{\frac{1}{2}}, \text{ where } D_2 > 0.$$

Since $\lim_{n \to \infty} \frac{1}{b_n} = 0$, there exists a positive constant A_2 such that

$$\left(R_{n,p_{n},q_{n}}\left(\left(t-x\right)^{4},x\right)\right)^{\frac{1}{2}} \leq A_{2}\left(1+x^{2}\right).$$
(9)

$$\left(R_{n,p_n,q_n}\left(\left(\frac{|t-x|}{\delta}\right)^2, x\right)\right)^{\frac{1}{2}} \le \left(D_1 \frac{1}{\delta^2} (1+x^2)\right)^{\frac{1}{2}} \le \sqrt{D_1} \frac{1}{\delta} (1+x^2)^{\frac{1}{2}}, \quad D_1 > 0.$$
(10)

For $0 < q_n < p_n < 1$, by substituting (8), (9) and (10) into the inequality (7), we can write

$$\begin{aligned} \left| R_{n,p_{n},q_{n}}(f,x) - f(x) \right| &\leq 2 \left(1 + x^{2} \right) \left\{ A_{1}\left(1 + x^{2} \right) + \sqrt{D_{1}} \frac{1}{\delta} \left(1 + x^{2} \right)^{\frac{1}{2}} \right. \\ &+ A_{2}\left(1 + x^{2} \right) \sqrt{D_{1}} \frac{1}{\delta} \left(1 + x^{2} \right)^{\frac{1}{2}} \right\} \Omega_{2}\left(f, \delta \right). \end{aligned}$$

Now, by taking $\delta = \frac{1}{\sqrt{D_1}}$, $A_3 = 2(1 + A_1 + A_2)$, and we get the desired result.

3. Conclusion

In this paper, by using the notion of (p,q)-calculus and weighted modulus of continuity we study weighted approximation properties of new (p,q)- analogue of the Balázs-Szabados operators. We give the rate of convergence for these operators and we give a Korovkin type theorem for weighted approximation.

4. Acknowledgements

We thank Prof. Dr. Nazim Mahmudov for his valuable suggestions.

References

- [1] Balázs, K. (1975). Approximation by Bernstein type rational function. *Acta Math. Acad. Sci. Hungar*, Vol. 26, No. 1-2, 123-134.
- [2] Balázs, K. and Szabados, J. (1982). Approximation by Bernstein type rational function II. Acta Math. Acad. Sci. Hungar, Vol. 40, No. 3-4, 331-337.
- [3] Hamal, H. and Sabancigil, P. (2020). Some Approximation properties of new Kantorovich type *q*-analogue of Balazs-Szabados Operators. *J. Inequal. Appl*, Vol: 159, No: 1-16.
- [4] Doğru, O. (2006). On Statistical Approximation Properties of Stancu type bivariate generalization of Balázs-Szabados operators. Proceedings. Int. Conf. on Numer. Anal. and Approx. Theory Cluj-Napoca, Romania. 179-194.
- [5] Özkan, E. Y. (2019). Approximation Properties of Kantorovich type Balázs-Szabados operators. *Demonstr. Math.*, 52, 10-19.
- [6] Mahmudov, N. I. (2016). Approximation Properties of the Balázs-Szabados Complex Operators in the case. *Comput. Methods Funct. Theory*. Vol: 16, 567-583.
- [7] İspir, N., Özkan, E. Y. (2013). Approximation Properties of Complex Balázs-Szabados Operators in Compact Disks. J. Inequal and Appl., 361.
- [8] Mursaleen, M., Ansari, K. J., and Khan, A. (2015). On analogue of Bernstein operators, *Appl. Math. Comput*, (266),874-882. [Erratum: *Appl. Math. Comput.* 278, 70-71 (2016)].
- [9] Mursaleen, M., Sarsenbi, A. M., Khan, T. (2016). On analogue of two parametric Stancu-Beta operators. *J. Inequal. Appl*, Artical ID 190.
- [10] Mursaleen, M., Khan, A. (2014). Statistical approximation for new positive linear operators of lagrange type. *Appl. Math. Comput.*, 232, 548-558.
- [11] Mursaleen, M., Ansari, K. J., and Khan, A. (2016). Approximation by Lorentz polynomials on a compact disk, Comlex Anal.Oper. Theory, 10(8), 1725-1740.
- [12] Mursaleen, M., Nasiruzzaman, M., Khan, A., and Ansari, K. J. (2016). Some approximation results on Bleimann-Butzer-Hahn operators defined by integers, Filomat, (30) (3), 639-648.
- [13] Mursaleen, M., Ansari, K. J., and Khan, A. (2016). Some approximation results for Bernstein-Kantorovich operators based on calculus. U.P.B. Sci. Bull. Series A., (78) (4), 129-142.
- [14] Mursaleen, M., Ansari, K. J., and Khan, A. (2015). Some approximation results by analogue of Bernstein-Stancu operators. *Appl. Math. Compt.*, (246), 392-402.
- [15] Acar, T. (2016). Generalization of Szász-Mirakyan operators. Math. Methods Appl. Sci., 39 (15), 2685-2695.
- [16] Acar, T., Aral, A., Mohiuddine, S. A. (2016). On Kantorovich modification of Baskakov operators. J. Inequal. Appl., (98).
- [17] Özkan, E. Y., Ispir N. (2018). Approximation by Analogue of Balázs-Szabados Operators. Filomat, 32(6), 2257-2271.
- [18] Hamal, H. and Sabancigil, P. (2021). Some Approximation Properties of new (p,q)-analogue of Balázs-Szabados Operators. *J. Inequal. Appl.*, No: 162.
- [19] Aral, A., Gupta, V., Agarwal, R. P. (2013). Applications of Calculus in Operator Theory. Springer, Chapters: 4, 5.
- [20] Aral, A., Gupta, V. (2010). Convergence of analogue of Szasz-Beta operators. Appl. Math. Comput, Vol: 216, No: 2, 374-380.
- [21] Gadzhiev, A. D. (1974). The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P.P Korovkin. Sov. Math. Dokl, Vol: 15, No: 5, 1433-1436.
- [22] Gadzhiev, A. D. (1976). P. P. Korovkin type theorems, *Mathem. Zametki*, Vol: 20, No: 5, *Engl. Transl. Math Notes*, Vol: 20, No: 5-6, 995-998.
- [23] Altomare, F. (2010). Korovkin-type Theorems and Approximation by Positive Linear Operators. Surv. Approx.

Theory, 5, 92-164.

- [24] Gadzhiev, A. D., Efendiyev, E., Ibikl. (2003). On Korovkin type theorem in the space of locally integrable functions. *Czech. Math.J*, Vol: 53, No: (128)(1), 45-53.
- [25] Yuksel, I., Ispir, N. (2006). Weighted approximation by a certain family of summation integral-type operators. Comput. *Math. Appl*, Vol: 52, No: 10-11, 1463-1470.
- [26] López-Moreno, A.-J. (2004). Weighted simultaneous approximation with Baskakov type operators. *Acta Math. Hunger*, Vol: 104, No: 1-2, 143-151.