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  Abstract 
Korovkin-type theorems provide simple and useful tools for finding out whether a 
given sequence of positive linear operators, acting on some function space is an 
approximation processor, equivalently, converges strongly to the identity operator. 
These theorems exhibit a variety of test subsets of functions which guarantee that 
the approximation property holds on the whole space provided it holds on them. 
These kinds of results are called “Korovkin-type theorems” which refers to P.P. 
Korovkin who in 1953 discovered such a property for the functions 1 , x  and 2x
in the space C([0,1]). After this discovery, several mathematicians have undertaken 
the program of extending Korovkin’s theorems in many ways and to several 
settings. Such developments delineated a theory which is nowadays referred to as 
Korovkin-type approximation theory. In this paper, we study weighted approxima-
tion properties of new (p, q) - analogue of the Balázs-Szabados operators by using 
the weighted modulus of continuity and we give a Korovkin type theorem for 
weighted approximation. 
 
Keywords 
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1. Introduction 

In the year 1975, Catherine Balázs defined and studied Bernstein type rational functions as follows (see [1]), 
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where f  is a real valued and single valued function which is defined on the unbounded interval [ )0,∞ , na  and nb  
are real numbers which are selected suitably and do not depend on x . Seven years later in 1982, Catherine Balázs and J. 
Szabados studied together to improve the estimation in [2] by selecting suitable na  and nb  under some restrictions for 

( )f x . 
Recently, generalizations of Balázs-Szabados operators based on the -q integers are studied by Hayatem Hamal and 

Pembe Sabancigil ([3]), Ogün Doğru ([4]) and Esma Yıldız Özkan ([5]). Approximation properties of the -q
Balázs-Szabados complex operators are studied by Nazım I. Mahmudov in [6] and by Nurhayat Ispir and Esma Yıldız 
Özkan in [7]. 
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Moreover, the fast rise of ( ), -p q analysis has encouraged many authors in this subject to discover different generali-
zations and examine their approximation properties. In the last seven years, Mohammad Mursaleen et al. introduced and 
studied ( ), -p q analogue of Bernstein operators, ( ), -p q analogue of Bernstein-Stancu operators, Bernstein-Kantorovich 

operators based on ( ), -p q calculus, ( ), -p q Lorentz polynomials on a compact disc, Bleimann-Butzer-Hahn operators 

defined by ( ), -p q integers and ( ), -p q analogue of two parametric Stancu-Beta operators (see [8]-[14]). ( ), -p q gene-

ralization of Szász-Mirakyan operators is studied by Tuncer Acar (see [15]), Kantorovich modification of ( ), -p q
Bernstein operators is studied by Tuncer Acar and Ali Aral (see [16]). A generalization of -q Balázs-Szabados operators 
based on ( ), -p q integers is studied by Esma Yıldız Özkan and Nurhayat Ispir in [17]. Hayatem Hamal and Pembe Sa-

bancigil introduce a new ( ), -p q generalization of -q Balázs-Szabados operators as follows (see [18]), 
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In this paper, we study weighted approximation properties of new ( ), -p q analogue of the Balázs-Szabados operators 
by using the weighted modulus of continuity and we give a Korovkin type theorem for weighted approximation. 

Before giving the main results for the mentioned operators above, we present some important notations and some basic 
definitions of ( ), -p q analysis. For any two non-negative numbers  , p q  and a non-negative integer n , the ( ), -p q
integer of the number n  is defined as follows: 

[ ]
[ ]

11 2 3 2 2 1
,

       1

           1... .
           1

                1

n n

nn n n n n
p q

q

p q if p q
p q
np if p qn p p q p q pq q
n if p

n if p q

−− − − − −

 −
≠ ≠ −

 = ≠= + + + + + = 
 =
 = =

 

The ( ), -p q factorial is defined by [ ] [ ], ,
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( ), -p q binomial cofficient is defined by 
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and the formula of ( ), -p q binomial expantion is defined by 
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2. Maın Results 
Firstly we consider the following three spaces: 

[ ) { }2
2 0, : [0, ) : ( ) (1 )fB f R f x M x∞ = ∞ → ≤ + , where fM  is a constant depending on .f   
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The norm on the space [ )2 0,C∗ ∞  is shown as 22
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The modulus of continuity of f  on a closed and bounded interval [ ]0, ,  0b b >  is defined as follows:  
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Definition 1 [18] Let 0 1,q p< < ≤  we introduce a new ( ), -p q analogue of Balázs-Szabados operators by 
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In the following theorem we give the rate of convergence for the new ( ), -p q analogue of Balázs-Szabados operators, 

( ), , ,n p qR f x . 

Theorem 1 ([19], [20]). Let [ )2 0, ,0 1f C q p∈ ∞ < < ≤  and ( )1 ,b fω δ+  be the modulus of continuity on  

[ ] [ )0, 1 0, ,b + ⊂ ∞  where 0.b >  Then for every n∈  , we have 
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So, with [ ]0,  0, ,  0x b tδ > ∈ ≥  and by the inequalities (1) and (2) we may write 
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by applying ( ), , ,n p qR f x  to the above inequality and by the well known Cauchy-Schwarz Inequality, we obtain 
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Now by using Lemma 3 in [18], we may write 
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 where 1D  is a positive constant. 

For [ ]0,x b∈ , we have the following explicit formula: 
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Then, by taking ( )1 1D bδ = + , ( )14 fL M D= +  we get the desired result. 

In the following theorem, we give Korovkin’s approximation property for the new ( ), -p q analogue of Balázs- 
Szabados operators. 

Theorem 2. Assume that ,  n nq q p p= =  are sequences such that  0 1n nq p< < ≤  and 1nq →  as .n →∞  Then 
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Proof. By using the Korovkin theorem for weighted approximation (see [21], [22], [23]), it is sufficient to show that 
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 By using triangle inequality, we get 
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By taking the limit overall the last inequality, we have 
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Again by using Lemma 2 in [18], we have 
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Then, we have 
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Now by taking the limit overall the last inequality, we have 
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Now, we present the next theorem to approximate all functions in the space [ )2 0, .C∗ ∞  These types of results are 
given in [24] for locally integrable functions. 

Theorem 3. Let 0 1n nq p< < < , 1nq →  as n →∞ . Then for each [ )2 0,f C∗∈ ∞  and all 0υ > , we have 
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Now, by definition of the norm of each function belonging to [ )2 0,C∗ ∞ , we have 

( ) ( )2
2

1f x f x≤ + , also we have 
( )

( ) ( ) ( )0

2 2
12 2 2

0

sup
1 1 1x x

f x f f

x x x
υ υ υ+

>
≤ ≤

+ + +
. 

Let 0ε > . We can choose 0x  in such a way that 

( )
2

2
0

.
31

f

x
υ

ε
<

+
                                      (5) 

By Theorem 2, we get 
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By using Theorem 1, we can see that the first term of the inequality (4) implies that 
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By taking the limit over inequality (4) and combining inequalities (5) and (6), we get the desired result. 
Next, we discuss the order of approximation of the functions 2f C∗∈  by the operators , ,n p qR  with the help of the 

following weighted modulus of continuity (see [25] and [26]). 
The weighted modulus of continuity is defined by 
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The weighted modulus of continuity and usual modulus of continuity have similar properties. 
Lemma 1 ([26]). Let [ )2 0, .f C∗∈ ∞  Then, we have the following: 

1) ( )2 ;f δΩ  is a monotonic increasing function of .δ  
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In the following theorem we give the main convergence result which gives an expression of the approximation error 

with the operators , ,n p qR  using 2.Ω  

Theorem 4. Let 2f C∗∈  , 0 1n nq p< < <  such that 1nq →  as .n →∞  Then we have the following inequality 
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By using linearity and positivity properties of the operators , ,n nn p qR , we obtain 
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Applying the Cauchy-Schwarz inequality on the second term of the last inequality, we get 
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On the other hand, in [18], by using (12) and (13) in Lemma 4, we have the following inequalities 
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For 0 1n nq p< < < , by substituting (8), (9) and (10) into the inequality (7), we can write 
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Now, by taking 
1

1
D

δ = , ( )3 1 22 1A A A= + + , and we get the desired result. 

3. Conclusion 

In this paper, by using the notion of ( ), -p q calculus and weighted modulus of continuity we study weighted approx-

imation properties of new ( ), -p q analogue of the Balázs-Szabados operators. We give the rate of convergence for these 
operators and we give a Korovkin type theorem for weighted approximation. 
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