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  Abstract 

The paper offers a mathematical study to determine the error approximation of the 

numerical solution by applying the discontinuous Galerkin (DG) finite element 

method of the time dependent hyperbolic differential equation. The DG method is 

a dynamic numerical method with much mass compensation and more flexible 

meshing than other methods. This study is specified a general introduction and dis-

cuss about the discontinuous Galerkin Method for the time dependent hyperbolic 

differential equation. The hyperbolic problem satisfies the condition of the exist-

ence and uniqueness of DG solution. The error analysis of this problem is also es-

tablished. It is a different and straightforward approach to the weak formulation to 

seek error analysis from all other finite element scheme which is given in the liter-

ature. The main goal of this study is to theoretically explore the convergence of the 

solution as well as to regulate the error approximation of the methods and show the 

validity of the results. 

 

Keywords 

Time Dependent, Hyperbolic equation, Discontinuous Galerkin, Finite element 
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1. Introduction 

This paper provides a theoretical observation to approximate the error of the solutions of the time dependent hyperbolic 

differential equation. The method is well suited for large scale time-dependent computations in which high accuracy is 

required. The discontinuous Galerkin (DG) method has been extensively studied and applied to a wide range of parabolic 

problems. Chi-Wang Shu analysed the discontinuous Galerkin finite element method (DGFEM) for the distributed first-

order linear hyperbolic problems [1]. It derived an error estimator on general finite element meshes that are sharp in the 

mesh. Chunguang Xiong and Yuan Li represented the convergence properties of the DGFEM approximation of optimal 

control problem governed by convection-diffusion equations [2]. It exposed a posteriori error estimates and a priori error 

estimates for both the states, ad-joint, and the control variable approximation. For the optimal control problem, these esti-

mates are apparently not available in the literature. In the book Beatrice Riviere [3], Discontinuous Galerkin Methods for 

Solving Elliptic and Parabolic Equations; Theory and Implementation, provided a comprehensive introduction to Discon-

tinuous Galerkin Methods for solving DG problems. It covered both the theoretical foundations of the method and its 

practical implementation. The developments of discontinuous Galerkin methods are established by [4-7]. They provided 

an overview of the development of DG methods and their applications to various partial differential equations. The book 

by Vit Dolejsi, and Miloslav Feistauer [8], is the mathematical theory of the discontinuous Galerkin method (DGM), which 

is a relatively new technique for the numerical solution of partial differential equations. The book is concerned with the 

DGM developed for differential equations and its applications to the numerical simulation of compressible flow. It deals 
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with the theoretical as well as practical aspects of the DGM and treats the basic concepts and ideas of the DGM, as well as 

the latest significant findings and achievements in this area. Emmanuil H. Georgoulis represented the introduction to the 

finite element method (FEM) and discontinuous Galerkin methods for the numerical solution to partial differential equa-

tions [9]. Brezzi, F. and Marini, L.D. discussed the application of the DG method to hyperbolic problems, such as the wave 

equation [5]. It presented a framework for the analysis of the method's stability and convergence and highlights the ad-

vantages of DG over other methods for these types of problems. Hossain MS, Xiong C, and Sun H showed a priori as well 

as a posteriori error estimates for the first-order hyperbolic equation [10]. Hossain, M.S. and Xiong, C. used a different 

form of penalty parameter to establish the error analysis of the convection equation [11]. 

2. Problem formulation 

Let 𝛺 be a bounded polynomial domain in ℝ𝑑 , 𝑑 = 1, 2 𝑜𝑟 3, let (0, 𝑇) be a time interval. For 𝑓 ∈ 𝐿2(0, 𝑇; 𝐿2(𝛺)), 𝑔𝐷 

in 𝐿2 (0, 𝑇; 𝐻
1

2(𝜕𝛺)), and 𝑧0 ∈ 𝐿2(𝛺) we consider the hyperbolic problem with Dirichlet boundary condition: 

𝜕2𝑢

𝜕𝑡2
− ∇. (𝛽∇𝑢) + 𝑏𝑢 = 𝑓 𝑖𝑛  (0, 𝑇) × 𝛺                                                          (1) 

𝑧 = 𝑔𝐷 𝑜𝑛 (0, 𝑇) × 𝛺                                                                                           (2) 

𝑧 = 𝑔0 𝑜𝑛 {0} × 𝛺                                                                                                (3) 

The function 𝑢(𝑥, 𝑡) measures the deflection of the string and 𝛽 denote a constant non zero velocity vector. A strong 

solution of the hyperbolic problem belongs to 𝐶∞([0, 𝑇] × 𝛺 ) and satisfies (1) − (3) pointwisely. A weak solution of 

the hyperbolic problem belongs to the space 𝐿2(0, 𝑇; 𝐻1(𝜕𝛺)) ∩ 𝐻1(0, 𝑇; 𝐿2(𝛺)) and satisfies the variational formulation 

∀𝑡 > 0, ∀𝑣 ∈ 𝐻0
1(𝛺), (

𝜕2𝑢

𝜕𝑡2
, 𝑣)

𝛺

+ (𝛽∇𝑢, ∇𝑣)𝛺 = (𝑓, 𝑣)𝛺 

∀𝑣 ∈ 𝐻0
1(𝛺), (𝑧(0), 𝑣)𝛺 = (𝑧0, 𝑣)𝛺 

Let us now define a semidiscrete solution of the hyperbolic problem. 

3. Semidiscrete formulation 

We approximate the solution 𝑢(𝑡) by a function 𝑈ℎ(𝑡) that belongs to the finite dimensional space 𝐷𝑘(𝜀ℎ) for all 𝑡 ≥
0. The solution 𝑈ℎ is referred to as the semidiscrete solution, or sometimes as the continuous in time solution. 

Let 𝑣 ∈ 𝐻𝑠(𝜀ℎ) for 𝑠 >
3

2
, multiply (1) by 𝑣, integrate over one mesh element, use Green’s theorem, and sum over all 

elements to obtain 

∀𝑡 > 0, ∫
𝜕2𝑢

𝜕𝑡2
𝑣

⬚

𝛺

+ ∑ ∫ 𝛽∇𝑢. ∇𝑣
⬚

𝐸𝐸∈𝜀ℎ

− ∑ ∫ {𝛽∇𝑢. 𝒏𝑒}
⬚

𝑒𝑒∈𝛤ℎ∪𝜕𝛺

[𝑣] + 𝜖 ∑ ∫ {𝛽∇𝑢. 𝒏𝑒}
⬚

𝑒𝑒∈𝛤ℎ∪𝜕𝛺

[𝑢]

+ ∑
𝜎𝑒

0

|𝑒|𝛾0
∫ [𝑢]

⬚

𝑒𝑒∈𝛤ℎ∪𝜕𝛺

[𝑣] = 𝐿(𝑡; 𝑣),                                                      … … … … (4) 

where 

𝐿(𝑡; 𝑣) = ∫ 𝑓(𝑡)𝑣
⬚

𝛺

+ ∑ ∫ 𝑔𝐷

⬚

𝑒𝑒∈𝜕𝛺

(𝑡) (𝜖(𝛽∇𝑢. 𝒏𝑒) +
𝜎𝑒

0

|𝑒|𝛾0
𝑣). 

We define the energy norm for the hyperbolic problem 

‖𝑣‖𝜀 = (∑‖𝛽∇𝑣‖
𝐿2(𝑒)
2

𝐸

+ ∑
𝜎𝑒

0

|𝑒|𝛾0
‖𝑣‖

𝐿2(𝑒)
2

𝑒∈𝛤ℎ∪𝜕𝛺

)

1

2

 

We still denote the bilinear form by 𝑎𝜖 as 

𝑎𝜖(𝑤, 𝑣) = ∑ ∫ 𝛽∇𝑤. ∇𝑣
⬚

𝐸𝐸∈𝜀ℎ

− ∑ ∫ {𝛽∇𝑤. 𝒏𝑒}
⬚

𝑒𝑒∈𝛤ℎ∪𝜕𝛺

[𝑣] + 𝜖 ∑ ∫ {𝛽∇𝑢. 𝒏𝑒}
⬚

𝑒𝑒∈𝛤ℎ∪𝜕𝛺

[𝑤] + ∑
𝜎𝑒

0

|𝑒|𝛾0
∫ [𝑤]

⬚

𝑒𝑒∈𝛤ℎ∪𝜕𝛺

[𝑣] 
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And we assume that coercivity of 𝑎𝜖 holds true for some 𝜅 > 0. 

∀𝑣 ∈ 𝐷𝑘(𝜀ℎ), 𝜅‖𝑣‖𝜀
2 ≤ 𝑎𝜖(𝑣, 𝑣).                                                                             (5) 

Thus, the semidiscrete variational formulation is as follows: For all ≥ 0 , find 𝑈ℎ(𝑡) ∈ 𝐷𝑘(𝜀ℎ) such that 

∀𝑡 ≥ 0, ∀𝑣 ∈ 𝐷𝑘(𝜀ℎ), (
𝜕2𝑢

𝜕𝑡2
, 𝑣)

𝛺

+ 𝑎𝜖(𝑈ℎ(𝑡), 𝑣) = 𝐿(𝑡; 𝑣),                                    (6) 

∀𝑣 ∈ 𝐷𝑘(𝜀ℎ),   (𝑈ℎ(0), 𝑣)𝛺 =   (𝑢̃0, 𝑣)𝛺                                                                (7) 

The initial condition 𝑢̃0 can be chosen to be 𝑢0 if 𝑢0 belongs to the discrete space 𝐷𝑘(𝜀ℎ), or it can be chosen to be 

𝑢̃(0), where 𝑢̃ is an approximation of 𝑢 to be specified later. Using the global basis functions defined by 

𝛷𝑖
𝐸 = {

𝛷̂° 𝐹𝐸(𝑥), 𝑥 ∈ 𝐸
0, 𝑥 ∉ 𝐸

 

We can expand the semidiscrete solution 

∀𝑡 ∈ (0, 𝑇), ∀𝑥 ∈ 𝛺,   𝑈ℎ(𝑡, 𝑥) = ∑ ∑ 𝜉𝑖
𝐸(𝑡)𝛷𝑖

𝐸(𝑥)

𝑖=1𝐸∈𝜀ℎ

                                            (8) 

The degree of freedom 𝜉𝑖
𝐸’s are functions of time. Let 𝑁𝑒𝑙 denote the number of elements in the mesh. We can rename 

the basis functions and the degree of freedom such that 

{𝛷𝑖
𝐸: 1 ≤ 𝑖 ≤ 𝑁𝑙𝑜𝑐 , 𝐸 ∈ 𝜀ℎ } = {𝛷̃𝑗: 1 ≤ 𝑗 ≤ 𝑁𝑙𝑜𝑐𝑁𝑒𝑙}, 

{𝜉𝑖
𝐸: 1 ≤ 𝑖 ≤ 𝑁𝑙𝑜𝑐 , 𝐸 ∈ 𝜀ℎ } = {𝜉𝑗: 1 ≤ 𝑗 ≤ 𝑁𝑙𝑜𝑐𝑁𝑒𝑙}, 

4. Stability analysis 

We drive stability bounds for numerical solution. Choosing 𝑣 = 𝑈ℎ(𝑡) in (6) and using the coercivity result (5), we have 

1

2

𝑑2

𝑑𝑥2
‖𝑈ℎ‖

𝐿2(𝛺)
2 + 𝜅‖𝑈ℎ‖𝜀

2 ≤ |𝐿(𝑡; 𝑈ℎ(𝑡))|. 

From Cauchy-Schwarz’s inequality, the right-hand side is bounded by 

|𝐿(𝑡; 𝑈ℎ(𝑡))| ≤ ‖𝑓(𝑡)‖𝐿2(𝛺)‖𝑈ℎ(𝑡)‖𝐿2(𝛺) + ∑ (‖𝛽∇𝑈ℎ(𝑡). 𝒏𝑒‖𝐿2(𝑒) +
𝜎𝑒

0

|𝑒|𝛾0
‖𝑈ℎ(𝑡)‖𝐿2(𝑒))

𝑒∈𝜕𝛺

‖𝑔𝐷(𝑡)‖𝐿2(𝑒). 

Next, we use the trace inequality 

∀𝑣 ∈ ℙ𝑘(𝐸), ∀𝑒 ⊂ 𝜕𝐸, ‖∇𝑣. 𝒏‖𝐿2(𝑒) ≤ 𝐶𝑡̂|𝑒|
1

2|𝐸|
−1

2 ‖∇𝑣‖𝐿2(𝐸) 

And Young’s inequality 

∀𝜖 > 0, ∀𝑎, 𝑏 ∈ ℝ, 𝑎𝑏 ≤
𝜖

2
𝑎2 +

1

2𝜖
𝑏2 

And as usual, the constant 𝐶 is independent of the mesh size ℎ. The derivation of similar bounds is done several times, 

we get 

|𝐿(𝑡; 𝑈ℎ(𝑡))| ≤ ‖𝑓(𝑡)‖𝐿2(𝛺)‖𝑈ℎ(𝑡)‖𝐿2(𝛺) +
𝜅

2
‖𝑈ℎ‖𝜀

2 + 𝐶 ∑
1

|𝑒|𝛾0

𝑒∈𝜕𝛺

‖𝑔𝐷(𝑡)‖
𝐿2(𝑒)
2                (9) 

Therefore, we obtain the intermediate result: 

1

2

𝑑2

𝑑𝑥2
‖𝑈ℎ‖

𝐿2(𝛺)
2 +

𝜅

2
‖𝑈ℎ‖𝜀

2 ≤ ‖𝑓(𝑡)‖𝐿2(𝛺)‖𝑈ℎ(𝑡)‖𝐿2(𝛺) + 𝐶 ∑
1

|𝑒|𝛾0

𝑒∈𝜕𝛺

‖𝑔𝐷(𝑡)‖
𝐿2(𝑒)
2        (10) 

We present two possible approaches for obtaining the final a priori bound. The first one is more standard and uses 

Gronwall’s inequality. The second approach takes advantage of poincare ’́s inequality. 

Approach using Gronwall’s inequality: We simply bound 

‖𝑓(𝑡)‖𝐿2(𝛺)‖𝑈ℎ(𝑡)‖𝐿2(𝛺) ≤
1

2
‖𝑓(𝑡)‖

𝐿2(𝛺)
2 +

1

2
‖𝑈ℎ(𝑡)‖

𝐿2(𝛺)
2  
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Multiply the equation by 2, and integrate from 0 to 𝑡 

𝑑

𝑑𝑡
‖𝑈ℎ(𝑡)‖

𝐿2(𝛺)
2 + 𝜅 ∫ ‖𝑈ℎ(𝑠)‖𝜀

2
𝑡

0

≤ ∫ ‖𝑓(𝑠)‖
𝐿2(𝛺)
2

𝑡

0

+ ∫ ‖𝑈ℎ(𝑠)‖
𝐿2(𝛺)
2

𝑡

0

+ ‖𝑈ℎ(0)‖
𝐿2(𝛺)
2 + 𝐶 ∑

1

|𝑒|𝛾0

𝑒∈𝜕𝛺

∫ ‖𝑔𝐷(𝑡)‖0,𝑒
2

𝑡

0

 

Then, by the continuous Gronwall’s inequality, we conclude that 

‖𝑈ℎ(𝑡)‖
𝐿2(𝛺)
2 + 𝜅 ∫ ‖𝑈ℎ(𝑠)‖𝜀

2
𝑡

0

≤ 𝐶 (∫ ‖𝑓(𝑠)‖
𝐿2(𝛺)
2

𝑡

0

+ ‖𝑈ℎ(0)‖
𝐿2(𝛺)
2 + ∑

1

|𝑒|𝛾0

𝑒∈𝜕𝛺

∫ ‖𝑔𝐷(𝑡)‖0,𝑒
2

𝑡

0

)    (11) 

The constant 𝐶 grows exponentially in time. We observe that this approach is valid for all primal DG methods with 

zero penalties. 

Approach using poincare ́’s inequality: If we use 

∀𝑣 ∈ 𝐻1(𝜀ℎ), ‖𝑣‖𝐿2(𝑒)  ≤ 𝐶 (|‖∇𝑣‖|
𝐻0(𝜀ℎ)
2 + ∑

1

|𝑒|𝛾0
‖[𝑣]‖

𝐿2(𝛺)
2

𝑒∈𝛤ℎ∪𝛤𝐷

) 

And Young’s inequality to bound ‖𝑈ℎ‖𝐿2(𝛺), we have 

1

2

𝑑2

𝑑𝑥2
‖𝑈ℎ‖

𝐿2(𝛺)
2 +

𝜅

2
‖𝑈ℎ‖𝜀

2 ≤
𝜅

4
‖𝑈ℎ‖𝜀

2 + 𝐶‖𝑓(𝑡)‖
𝐿2(𝛺)
2 + 𝐶 ∑

1

|𝑒|𝛾0

𝑒∈𝜕𝛺

‖𝑔𝐷(𝑡)‖
𝐿2(𝑒)
2 . 

After multiply by 2 and integrating from 0 to 𝑡 

𝑑

𝑑𝑡
‖𝑈ℎ(𝑡)‖

𝐿2(𝛺)
2 +

𝜅

2
∫ ‖𝑈ℎ(𝑠)‖𝜀

2
𝑡

0

≤ ‖𝑈̃0‖
𝐿2(𝛺)

2
+ 𝐶 ∫ ‖𝑓(𝑠)‖

𝐿2(𝛺)
2

𝑡

0

+ 𝐶 ∑
1

|𝑒|𝛾0

𝑒∈𝜕𝛺

∫ ‖𝑔𝐷(𝑠)‖
𝐿2(𝑒)
2

𝑡

0

, 

Which is the same inequality as (11) modulo some multiplicative constants. However, the constant 𝐶 is independent of 

time. This approach is valid if the penalty value 𝜎𝑒
0 is positive for all faces 𝑒. The final result is stated in the following 

lemma. 

Lemma: Assume that 𝛾0 ≥ (𝑑 − 1)−1. There exists a positive constant 𝐶 independent of ℎ such that 

    ‖𝑈ℎ(𝑡)‖
𝐿∞(0,𝑇;𝐿2(𝛺))

2 + ∫ ‖𝑈ℎ‖𝜀
2

𝑇

0

≤ 𝐶‖𝑈̃0‖
𝐿2(𝛺)

2
+ 𝐶‖𝑓(𝑠)‖

𝐿2(0,𝑇;𝐿2(𝛺))

2 + 𝐶 ∑
1

|𝑒|𝛾0

𝑒∈𝜕𝛺

‖𝑔𝐷(𝑠)‖
𝐿2(0,𝑇;𝐿2(𝛺))

2     (12) 

5. Error analysis 

We drive error estimates for the numerical error 𝑢 − 𝑈ℎ in the 𝐿∞(0, 𝑇; 𝐿2(𝛺)) and 𝐿2(0, 𝑇; 𝐻1(𝜀ℎ)) norms. We first 

define the hyperbolic projection 𝑢̃ of the exact solution 𝑢: 

∀𝑡 ≥ 0, ∀𝑣 ∈ 𝐷𝑘(𝜀ℎ), 𝑎𝜖(𝑢(𝑡) − 𝑢̃(𝑡), 𝑣) = 0,                                                (13) 

From the analysis of hyperbolic problem described in Chapter 2, we know that if 𝑢 belongs to 𝐿2(0, 𝑇; 𝐻𝑠(𝜀ℎ)) for 

𝑠 ≥
3

2
, the following error estimate holds: 

∀𝑡 ≥ 0, ‖𝑢(𝑡) − 𝑢̃(𝑡)‖𝜀 ≤ 𝐶ℎmin(𝑘+1,𝑠)−1‖𝑢(𝑡)‖𝐻𝑠(𝜀ℎ)                                          (14) 

In addition, if 𝛺 is convex, error estimates in 𝐿2 norm are 

∀𝑡 ≥ 0, ‖𝑢(𝑡) − 𝑢̃(𝑡)‖𝐿2(𝛺) ≤ 𝐶ℎmin(𝑘+1,𝑠)‖𝑢(𝑡)‖𝐻𝑠(𝜀ℎ)                                       (15) 

∀𝑡 ≥ 0, ‖𝑢(𝑡) − 𝑢̃(𝑡)‖𝐿2(𝛺) ≤ 𝐶ℎmin(𝑘+1,𝑠)−1‖𝑢(𝑡)‖𝐻𝑠(𝜀ℎ)                                   (16) 

Theorem 1: Assume that 𝑢 belongs to 𝐻1(0, 𝑇; 𝐻𝑠(𝜀ℎ)) and that 𝑢0 belongs to 𝐻𝑠(𝜀ℎ) for 𝑠 >
3

2
. Assume that 

𝛾0(𝑑 − 1)−1 ≥ 1. Assume that 𝜎𝑒
0 is sufficiently large for all 𝑒. Then, there is a constant 𝐶 independent of ℎ such that 

(∫ ‖𝑢(𝑡) − 𝑈ℎ(𝑡)‖𝜀
2

𝑇

0

)

1

2

≤ 𝐶ℎmin(𝑘+1,𝑠)−1‖𝑢(𝑡)‖𝐻1(0,𝑇;𝐻𝑠(𝜀ℎ)), 

‖𝑢(𝑡) − 𝑈ℎ(𝑡)‖
𝐿∞(𝐿2(𝛺))

≤ 𝐶ℎmin(𝑘+1,𝑠)−𝛿‖𝑢(𝑡)‖𝐻1(0,𝑇;𝐻𝑠(𝜀ℎ)), 
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Where 𝛿 = 0, if 𝛾0 ≥ 3(𝑑 − 1)−1, if the mesh consists only of triangles and tetrahedral, and if 𝑔𝐷 ∈ 𝐷𝑘(𝜀ℎ). Other-

wise, 𝛿 = 1. 

Proof: Since the scheme is constant, we obtain the following orthogonality equation: 

∀𝑡 ≥ 0, ∀𝑣 ∈ 𝐷𝑘(𝜀ℎ), (
𝜕2(𝑈ℎ − 𝑢)

𝜕𝑡2
, 𝑣)

𝛺

+ 𝑎𝜖 ((𝑈ℎ(𝑡) − 𝑢(𝑡)), 𝑣) = 0. 

Defining 𝜒 = 𝑈ℎ − 𝑢̃, we have for all 𝑡 > 0 and for all 𝑣 ∈ 𝐷𝑘(𝜀ℎ) 

(
𝜕2𝜒

𝜕𝑡2
, 𝑣)

𝛺

+ 𝑎𝜖 (
𝜕𝜒(𝑡)

𝜕𝑡
, , 𝑣) = (

𝜕2(𝑢 − 𝑢̃)

𝜕𝑡2
, 𝑣)

𝛺

+ 𝑎𝜖 ((𝑢(𝑡) − 𝑢̃(𝑡)), 𝑣).                  (17) 

Using the definition of the hyperbolic projection, we obtain 

(
𝜕2𝜒

𝜕𝑡2
, 𝑣)

𝛺

+ 𝑎𝜖 (
𝜕𝜒(𝑡)

𝜕𝑡
, 𝑣) = (

𝜕2(𝑢 − 𝑢̃)

𝜕𝑡2
, 𝑣)

𝛺

.                                                       (18) 

Choosing 𝑣 = 𝜒(𝑡) and using the coercivity of 𝑎𝜖 and the definition of the hyperbolic projection, 

∀𝑡 > 0        
1

2

𝑑2

𝑑𝑡2
‖𝜒(𝑡) ‖𝐿2(𝛺)

2 + 𝜅‖𝜒(𝑡)‖𝜀
2 ≤ (

𝜕2(𝑢 − 𝑢̃)

𝜕𝑡2
, 𝜒(𝑡))

𝛺

                                  (19) 

As in the proof of the stability bound, we can use either Gronwall’s inequality or poincare ́’s inequality to obtain the 

final estimate. If the penalty parameter 𝜎𝑒
0 are positive for all 𝑒, we can bound the right-hand side of the equation above 

as 

(
𝜕2(𝑢 − 𝑢̃)

𝜕𝑡2
, 𝜒(𝑡))

𝛺

≤ ‖
𝜕2(𝑢 − 𝑢̃)

𝜕𝑡2
‖

𝐿2(𝛺)

‖𝜒(𝑡)‖𝐿2(𝛺) ≤
𝜅

2
‖𝜒(𝑡)‖𝜀

2 +
1

2𝜅
‖

𝜕2(𝑢 − 𝑢̃)

𝜕𝑡2
‖

𝐿2(𝛺)

2

. 

Therefore, using the error estimates satisfied by the hyperbolic projection, we obtain 

1

2

𝑑2

𝑑𝑥2
‖𝜒(𝑡) ‖𝐿2(𝛺)

2 +
𝜅

2
‖𝜒(𝑡)‖𝜀

2 ≤ 𝐶ℎ2min(𝑘+1,𝑠)−2𝛿 ‖|
𝜕2𝑢

𝜕𝑡2
|‖

𝐻𝑠(𝜀ℎ)

2

                             (20) 

Under certain conditions given in 

‖𝑝 − 𝑝ℎ‖𝐿2(𝛺) ≤ 𝐶ℎmin(𝑘+1,𝑠)‖𝑝‖𝐻𝑠(𝜀ℎ)  and 

‖𝑝 − 𝑝ℎ‖𝐿2(𝛺) ≤ 𝐶ℎmin(𝑘+1,𝑠)−1‖𝑝‖𝐻𝑠(𝜀ℎ) . 

Now 𝛿 is zero. Next, we multiply (20) by 2 and integrate from 0 to t: 

𝑑

𝑑𝑡
‖𝜒(𝑡)‖

𝐿2(𝛺)
2 + 𝜅 ∫ ‖𝜒(𝜏)‖𝜀

2
𝑡

0

≤ ‖𝜒(0)‖
𝐿2(𝛺)
2 + 𝐶ℎ2min(𝑘+1,𝑠)−2𝛿 ‖|

𝜕2𝑢

𝜕𝑡2
|‖

𝐿2(0,𝑇;𝐻𝑠(𝜀ℎ))

2

. 

We conclude by noting that 𝜒(0) = 0 and by using triangle inequalities in the 𝐿2 norm 

‖𝑢(𝑡) − 𝑈ℎ(𝑡)‖𝐿2(𝛺) ≤ ‖𝜒(𝑡)‖𝐿2(𝛺) + ‖𝑢(𝑡) − 𝑢̃(𝑡)‖𝐿2(𝛺) 

The triangle inequalities in the energy norm 

(∫ ‖𝑢(𝑡) − 𝑈ℎ(𝑡)‖𝜀
2

𝑇

0

)

1

2

≤ (∫ ‖𝑢(𝑡) − 𝑢̃(𝑡)‖𝜀
2

𝑇

0

)

1

2

+ (∫ ‖𝑢̃(𝑡) − 𝑈ℎ(𝑡)‖𝜀
2

𝑇

0

)

1

2

, 

And the error estimates satisfied by 𝑢̃. 
Theorem 2: Let 𝜖 = −1, there exist a constant 𝐶 independent of ℎ such that 

‖
𝜕2(𝑢 − 𝑢̃)

𝜕𝑡2
‖

𝐿2(0,𝑡;𝐿2(𝛺))

≤ 𝐶ℎmin(𝑘+1,𝑠)‖𝑢‖𝐻1(0,𝑇;𝐻𝑠(𝜀ℎ)). 

Proof: In the error equation (4.18), we choose 𝑣 = 𝜒(𝑡) 
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‖
𝜕𝜒

𝜕𝑡
‖

𝐿2(𝛺)

2

+ 𝑎𝜖 (
𝜕𝜒

𝜕𝑡
, 𝜒(𝑡)) = (

𝜕𝜒

𝜕𝑡
,
𝜕(𝑢 − 𝑢̃)

𝜕𝑡
)

𝛺

 

Thus, using the symmetry property of 𝑎𝜖, we have 

‖
𝜕𝜒

𝜕𝑡
‖

𝐿2(𝛺)

2

+
1

2

𝜕

𝜕𝑡
𝑎𝜖(𝜒(𝑡), 𝜒(𝑡)) = (

𝜕𝜒

𝜕𝑡
,
𝜕(𝑢 − 𝑢̃)

𝜕𝑡
)

𝛺

≤
1

2
‖

𝜕𝜒

𝜕𝑡
‖

𝐿2(𝛺)

2

+
1

2
‖

𝜕(𝑢 − 𝑢̃)

𝜕𝑡
‖

𝐿2(𝛺)

2

. 

Integrating from 0 to t and using the fact that 𝜒(0) = 0, we obtain 

∫ ‖
𝜕𝜒

𝜕𝑡
‖

𝐿2(𝛺)

2𝑡

0

+
1

2
𝑎𝜖(𝜒(𝑡), 𝜒(𝑡)) ≤

1

2
𝑎𝜖(𝜒(0), 𝜒(0)) +

1

2
∫ ‖

𝜕(𝑢 − 𝑢̃)

𝜕𝑡
‖

𝐿2(𝛺)

2𝑡

0

≤ 𝐶ℎ2min(𝑘+1,𝑠) ‖
𝜕𝑢

𝜕𝑡
‖

𝐿2(0,𝑇;𝐻𝑠(𝜀ℎ))
. 

Using coercivity of 𝑎𝜖 and the triangle inequality, we have 

‖
𝜕(𝑢 − 𝑈ℎ)

𝜕𝑡
‖

𝐿2(0,𝑇;𝐿2(𝛺))

≤ ‖
𝜕(𝑢 − 𝑢̃)

𝜕𝑡
‖

𝐿2(0,𝑇;𝐿2(𝛺))

+ ‖
𝜕𝜒

𝜕𝑡
‖

𝐿2(0,𝑇;𝐿2(𝛺))
≤ 𝐶ℎmin(𝑘+1,𝑠) ‖

𝜕𝑢

𝜕𝑡
‖

𝐿2(0,𝑇;𝐻𝑠(𝛺))
. 

This concludes the proof. 

6. Conclusion 

This paper investigated the error approximation of the numerical solution by applying the Discontinuous Galerkin finite 

element method for the hyperbolic differential equation. It considered discontinuous Galerkin finite element approxima-

tions of time dependent hyperbolic equation. This work studied the effect of finite element spaces on the norm properties 

of DG solutions. The technique used in this paper can also be extended to the higher-order time depending on the scheme 

to obtain the 𝐿2(𝛺). error estimate of the above method with the optimal order of convergence. 
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