magazinelogo

Journal of Applied Mathematics and Computation

ISSN Print: 2576-0645 Downloads: 126132 Total View: 1656014
Frequency: quarterly ISSN Online: 2576-0653 CODEN: JAMCEZ
Email: jamc@hillpublisher.com
Article http://dx.doi.org/10.26855/jamc.2024.09.001

Effect of Physical Parameters and Tilt Angle on Nusselt Number

Madialène Sene1,*, Momath Ndiaye1, Goumbo Ndiaye2

1Hydraulics, Rural Engineering, Machinery and Renewable Energies Training and Research Unit, University of Sine Saloum El Hadj Ibrahima NIASS, 5V7F+JH3, Kaolack, Senegal.

2Sen'eau, BP 4945, Dakar, Senegal.

*Corresponding author: Madialène Sene

Published: September 29,2024

Abstract

Using a conformal transformation, our curvilinear boundary domain is reduced to a parallelepiped domain to formulate boundary conditions more simply without increasing the complexity of the formulation of equations. The authors numerically study natural steady-state thermal convection within an enclosure bounded by two portions of cylindrical horizontal generator dishes and a flat surface. To generalize the problem and reduce the number of parameters involved, the equations will be dimensionalized thanks to carefully chosen reference quantities. Nonlinear algebraic systems resulting from discretization by the PDQ Method are solved by an iterative line-by-line relaxation method. Estimates of the space steps that give our schemes high stability are given. The authors analyzed the effects of control parameters such as the Rayleigh number and the variation in the mean Nusselt number as well as the variation in the local Nusselt number.

References

[1] G.DE Vahl Davis. Laminar natural convection in an enclosed rectangular cavity. Int. J. Heat Mass Transfer, 1960, vol.ll, pp. l675-1693.

[2] G. De Vahl Davis. Natural convection of air in a square cavity: A benchmark numerical solution. International Journal for Numerical Methods in Fluids, 3, pp. 249-264, 1983.

[3] M. Kaviany. Effect of a Protuberance on Thermal Convection in a Square Cavity. Journal of Heat Transfer, Vol. 106, n. 1, pp. 830-834, 1984.

[4] W. M. Lewandowski, M. J. Khubeiz, Experimental Study of Laminar Natural Convection in Cells With Various Convex and Concave Bottoms. Journal of Heat Transfer, Vol. 114, n. 1, pp. 94-98, 1992.

[5] S. Najoua, C. Mbow, J. H. Lee, W. H. Park, M. Daguenet. Étude Numérique du Modèle de Boussinesq de Convection Naturelle Laminaire Transitoire dans un Ellipsoïde de Révolution de grand Axe Vertical Rempli d'Air (Numerical Study of the Boussinesq Model of Transient Laminar Natural Convection in a Vertically Elongated Ellipsoid Filled with Air). Revue Générale de Thermique, Vol. 36, n. 3, pp. 224-233, 1997.

[6] S. Das, Y. Morsi, Natural Convection Inside Dome Shaped Enclosures. International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 12, n. 2, pp. 126-141, 2002.

[7] Y. Morsi, S. Das. Numerical Investigation of Natural Convection inside Complex Enclosures. International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 24, n. 2, pp. 30-41, 2003.

[8] N. S. Kumar, K. S. Reddy. Investigation of Convection and Radiation Heat Losses From Modified Cavity Receiver of Solar Parabolic Dish Using Asymptotic Computational Fluid Dynamics. Heat Transfer Engineering, Vol. 31, n. 7, pp. 597-607, 2010.

[9] G. Diaz, R. Winston. Effect of Surface Radiation on Natural Convection in Parabolic Enclosures. Numerical Heat Transfer, Part A, Vol. 53, n. 9, pp. 891-906, 2008.

[10] A. W. Mustafa. Natural convection in Parabolic Enclosure Heated from Below. Modern Applied Science, Vol. 5, n. 3, pp. 213-220, 2011.

[11] D.C. Lo, D.L. Young, K. Murugesan, C.C. Tsai, M.H. Gou. Velocity–vorticity formulation for 3D natural convection in an inclined cavity by DQ method, 2007.

[12] Shu, C. and Xue, H. Explicit computation of weighting coefficients in the harmonic differential quadrature. J Sound Vib, 204(3), 549-555, (1997).

[13] Khudheyer S. Mushatet. Simulation of Natural Convection in an Inclined Square Cavity with Two Wavy Walls. Journal of Applied Sciences Research, 6(12): 2111-2122, (2010).

[14] B.Tahri, K. Bouhadef, A. Slimani Et M. Rebhi. Effet de l'inclinaison sur la convection naturelle dans un espace forme par trois cylindres, 10ème Séminaire International Sur La Physique Energétique (Effect of Inclination on Natural Convection in a Space Formed by Three Cylinders, 10th International Seminar on Energy Physics). Journal of Scientific Research, N° 0 vol. 1, (2010).

[15] Yahiaoui Abdelaziz. Etude de la convection naturelle dans les enceintes courbées ayant deux parois actives courbées verticales et deux parois inactives courbées horizontales; Mémoire, Université Mentouri Constantine, Faculté des Sciences Exactes département de physique-Algérie 2012 (Study of natural convection in curved enclosures with two active curved vertical walls and two inactive curved horizontal walls; Thesis, Mentouri University Constantine, Faculty of Exact Sciences, Department of Physics – Algeria 2012).

[16] S. Dia, C. Mbow and J. Sarr. Effects of the Heater Location on the Unsteady Two-Dimensional Natural Convection in Enclosure Bounded by Two Paraboloids of Revolution. American Journal of Fluid Dynamics, Vol.3, N.3, p 49-57, 2013.

[17] C. Shu. Application of Differential Quadrature to Simulate Natural Convection in a Concentric Annulus. Int. J. Numer. Meth. Fluids, 30: 977-993 (1999).

[18] Abdelkrim Fatima. Mémoire sur l’Etude de la convection naturelle thermique dans une enceinte fermée (Memoir on the Study of Natural Thermal Convection in a Closed Enclosure), 2018.

[19] M.M. Charafi, A. Bendaraa, A. Hasnoui. Numerical Modelling of Natural Convection in Square Cavity Filled with Effect of Nanofluid Volume Fraction and Inclination. J. MATEC Web of Conferences (2018). 

https://doi.org/10.1051/matecconf/201824101006.

[20] A. Bendaraa, Mly. M. Charafi, A. Hasnaoui. Numerical Study Of Natural Convection In A Differentially Heated Square Cavity Filled With Nanofluid In the Presence of Fins Attached To Walls In Different Locations. J. Physics of Fluids, 2019.

https://doi.org/10.1063/1.5091709.

[21] Doubbi Bounoua Karim. Analyse de la Convection Naturelle dans une enceinte rectangulaire chauffée discrètement par le bas. 2022 (Analysis of Natural Convection in a Rectangular Cavity Heated Discretely from the Bottom. 2022).  

[22] Mohamed Chaour, Sofiane Boulkroune, Billel Hamadi, Toufik Achour, Djamel Boucherma. Étude numérique du transfert de chaleur des nanofluides dans un canal plan application au panneau solaire thermique (Numerical study of heat transfer of nanofluids in a flat channel application to solar thermal panels). Journal of Physical & Chemical Research, 2023. https://ojs.univ-bba.dz. 

[23] Abbou Benaouda. Mémoire sur l’Analyse numérique de l’influence des caractéristiques géométrique et thermique sur le transfert par convection mixte dans les enceintes, 2024 (Thesis on the Numerical Analysis of the Influence of Geometric and Thermal Characteristics on Mixed Convection Transfer in Enclosures, 2024).

How to cite this paper

Effect of Physical Parameters and Tilt Angle on Nusselt Number

How to cite this paper: Madialène Sene, Momath Ndiaye, Goumbo Ndiaye. (2024) Effect of Physical Parameters and Tilt Angle on Nusselt NumberJournal of Applied Mathematics and Computation8(3), 191-201.

DOI: https://dx.doi.org/10.26855/jamc.2024.09.001