References
[1] D.J. ACHESON, Elementary fluid dynamics, Clarendon Press, Oxford, 1990.
[2] R.A. ADAMS, Sobolev spaces, Academic Press, New York, 1975.
[3] S. AGMON AND L. NIRENBERG, Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space, Comm. Pure Appl. Math, 20 (1967), 207-229.
[4] V.I. ARNOLD, Mathematical methods of classical mechanics, Springer-Verlag, Inc., New York, 1989.
[5] H. BAER AND K. STEPHAN. Heat and mass transfer, transl. by Janepark N., Springer-Verlag, Inc., New York, 1998.
[6] S.H. BALASURIYA, Barriers and transport in unsteady flows: a Melnikov approach, SIAM, Philadelphia, 2017.
[7] S.H. BALASURIYA, C.K.R.T. JONES, AND B. SANDSTEDE, Viscous perturbations of vorticity-conserving flows and separatrix splitting, Nonlinearity 11 (1998), 47-77.
[8] G.K. BATCHELOR. Introduction to fluid dynamics. Cambridge University Press, Cambridge, 1967.
[9] A.J. BOURGEOIS AND J.T. BEALE, Validity of the quasigeostrophic model for large-scale flow in the atmosphere and ocean, SIAM J. Math. Anal. 25 (4) 1994:1023-1068.
[10] M.G. BROWN AND R.M. SAMELSON, Particle motion in vorticity-conserving 2-dimensional incompressible flows, Physics of Fluids 6 (1994) 2875-2876.
[11] C. CANUTO, M.Y. HUSSAINI, A. QUARTERONI, AND T.A. ZANG, Spectral methods in fluid dynamics,
Springer-Verlag, Inc., New York, 1988.
[12] A. CONSTANTIN, Nonlinear water waves with applications to wave-current interactions and tsunamis, CBMS regional conference, SIAM, Philadelphia, 2011.
[13] B. CUSHMAN-ROISIN, Introduction to geophysical fluid dynamics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1994.
[14] C.M. DAFERMOS, Contraction semigroups and trend to equilibrium in continuum mechanics, Springer-Verlag, Inc., New York, 1976.
[15] C.M. DAFERMOS, Hyperbolic conservation laws in continuum physics, 3rd ed., Springer-Verlag, Inc., New York, 2010.
[16] F. DUMORTIER, H. KOKUBU, AND H. OKA, A degenerate singularity generating geometric Lorenz attractors, Ergod. Th. Dynam. Sys. 15 (1995) 833-856.
[17] G. FLIERL, Isolated eddy models in geophysics, Ann. Rev. Fluid Mech. 19(1987) 493-530.
[18] G. FLIERL, M. STERN, AND J. WHITEHEAD, The physical significance of modons: laboratory experiments and general physical constraints, Dyn. Atmos. Oceans 7(1983) 233-263.
[19] G. FLIERL, M.E. STERN, AND A. WHITEHEAD, The physical significance of modons: laboratory experiments and general integral constraints. Dyn. Atmos. Oceans 7 (1983) 263-293.
[20] G. FLIERL, V.D. LARICHEV, J.C. MCWILLIAMS, AND G.M. REZNIK, The dynamics of baroclinic and barotropic solitary eddies, Dyn. Atmos. Oceans 5 (1980) 1-41.
[21] G. FLIERL, P. MALANOTTE-RIZOLLI, AND N. ZABUSKY N., Nonlinear waves and coherent vortex structures in barotropic -plane jets, J. Phys. Oceanogr. 17 (1987) 1408-1438.
[22] C. FOIAS, O. MANLEY AND R. TEMAM, Attractors for the Bernard problem: Existence and physical bounds on their fractal dimension, Nonlinear Anal. 11 (1987), 939-967.
[23] C. FOIAS, G. SELL AND R. TEMAM, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations 73 (1988), 309-353.
[24] S.J. FRIEDLANDER, Lectures on stability and instability of ideal fluid, Institute of Advanced Studies, Princeton University, Princeton, 1999.
[25] S.J. FRIEDLANDER, Introduction to the mathematical theory of geophysical fluid dynamics, North Holland, New York, 1980.
[26] G.P. GALDI, An introduction to the mathematical theory of the Navier-Stokes equations, Springer-Verlag, Inc., New York, 1994.
[27] G.P. GALDI AND M. PADULA, A new approach to energy theory in the stability of fluid motion, Arch. Rational Mech. Anal. 110 (1990), 187-286.
[28] G.P. GALDI AND S. RIONERO, Weighted energy methods in fluid dynamics and elasticity, Springer-Verlag, Inc., New York, 1985.
[29] J. GRUENDLER, Homoclinic solutions and chaos in ordinary differential equations with singular perturbations, Trans. Amer. Math. 350 (9) (1998) 3797-3814.
[30] J. GRUENDLER, The existence of transverse homoclinic solutions for higher order equations, J. Differential Equations 130 (1996), 307-320.
[31] J. GUCKENHEIMER AND P. HOLMES, Nonlinear oscillations, dynamical systems and bifurcation of vector fields, Springer-Verlag, Inc., New York, 1983.
[32] M.E. GURTIN, An introduction to continuum mechanics, Academic Press, Inc., San Diego, 1981.
[33] J.K. HALE AND H. KOCAK, Dynamics and bifurcations, Springer-Verlag, Inc., New York, 1991.
[34] J.K. HALE AND S.M. VERDUYN LUNEL, Introduction to functional differential equations, Springer-Verlag, Inc., New York, 1993.
[35] J.K. HALE AND S.-N. CHOW, Methods of bifurcation theory, Springer-Verlag, Inc., New York, 1982.
[36] J.K. HALE, Ordinary differential equations, Wiley-Interscience, New York, 1969.
[37] G. HALLER, Chaos near resonance, Springer-Verlag, Inc., New York, 1999.
[38] G. HALLER AND A.C. POJE, Finite time transport in aperiodic flows, Physica D 83 (1998) 353-380.
[39] P. HARTMAN, Ordinary differential equations, SIAM, Philadelphia, 2002.
[40] S.B. HOOKER, J.J. HOLDZKOM, AND A.D. KIRWAN, A comparison of a hydrodynamic lens model to observations of a warm core ring, J. Geophys. Res. 100 C8}(1995) 15889-15897.
[41] S.B. HOOKER AND J.W. BROWN, Warm core ring dynamics derived from satellite imagery,
J. Geophys. Res. 99 (1994) 25181-25194.
[42] S.B. HOOKER AND D.B. OLSON, Center of mass estimation in closed vortices: A verification in principle and practice, J. Atmos. Oceanic Technol. {\bf 1} (1984) 247-255.
[43] F. JOHN, Partial differential equations, 4th ed., Springer-Verlag, Inc., New York, 1971.
[44] C.K.R.T. JONES, Session on dynamical systems: geometric singular perturbation theory, C.I.M.E. Lectures, 1994.
[45] T.M. JOYCE, J.K.B. BISHOP AND O.B. BROWN, Observations of offshore shelf-water transport induced by a warm-core ring, Deep Sea Res. 39 (1992) 97-113.
[46] T.M. JOYCE, Velocity and hydrographic structure of a Gulf Stream warm-core ring, J. Phys. Oceanogr. 14 (1984) 936-947.
[47] T.M. JOYCE, Gulf Stream warm-core ring collection: an introduction, J. Geophys. Res. {\bf 90} (1985) 8801-8802.
[48] T. KAPER AND G. KOVACIC, A geometric criterion for adiabatic chaos, J. Math. Phys. 35/3 (1994) 1202-1218.
[49] T. KAPER AND S. WIGGINS, Lobe area in adiabatic Hamiltonian systems, Physica D 51 (1991) 205-212.
[50] T. KATO, Perturbation theory for linear operators, Springer-Verlag, Inc. New York, 1966.
[51] T. KATO AND G. PONCE, Well-posedness of the Euler and Navier-Stokes equations in Lebesgue spaces, Revista Mathematica Iberoamerican 2 (1986) 73-88.
[52] R.E. KHAYAT, Chaos and overstability in the thermal convection of viscoelastic fluids, J. Non-Newtonian Fluid Mech. 53 (1994) 227-255.
[53] A.D. KIRWAN, P.R. MIED, AND B.L. LIPPHARDT, Rotating modons over isolated topography in two-layer ocean, Z. Angwe. Math. Phys. 48 (1997) 535-570.
[54] A.D, KIRWAN, P.R. MIED, AND G.J. LINDEMANN, Rotating modons over isolated topographic features, J. Phys. Oceanogr. 22 (1992) 1569-1582.
[55] R.C. KLOOSTERZIEL, G.F. CARNEVALE AND D. PHILIPPE, Propagation of the barotropic dipoles over topography in a rotating tank, Dyn. Atmos. Oceans 19 (1993) 65-100.
[56] A. MAJDA, Introduction to PDE and waves for the atmosphere and ocean, Courant Institute of Mathematical Sciences, New York University, New York, 2003.
[57] A. MAJDA, Vorticity and the mathematical theory of incompressible flow, Comm. Pure Appl. Math. 39 (1986) S187-S220.
[58] A. MAJDA AND S. KLAINERMAN, Singular limits of quasilnear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math. 43 (1981) 481-524.
[59] D. MARCHESIN, A.V. AZEVEDO, B.J. PLOHR, AND K. ZUMBRUN, Nonuniqueness of solutions of Riemann problems, Z. Angew. Math. Phys. 47 (1996) 977-998.
[60] A. MATSUMURU AND T. NISHIDA, The initial-boundary value problem for the equations of motion of general fluids, North-Holland Publishing Co., New York 10 (1982).
[61] J.C MCWILLIAMS, An application of the equivalent modons to atmospheric blocking,
Dyn. Atmos. Oceans 5}(1980) 43-66.
[62] P.R. MIED AND G.J. LINDEMANN, The birth and evolution of eastward propagating modons, J. Phys. Oceanogr. 12 (1982) 213-230.
[63] P. MILLER, A. ROGERSON, C.K.R.T. JONES, AND L. PRATT, Quantifying transport in numerically generated velocity fields, Physica D 110 (1997) 105-122.
[64] P. MILLER, A. ROGERSON, C.K.R.T. JONES, AND L. PRATT, Lagrangian motion and fluid exchange in a barotropic meandering jet, J. Phys. Oceanogr. 29 (1999) 2635-2655.
[65] J. MOSER, Stable and random motions in dynamical systems, Princeton University Press, Princeton, 1973.
[66] O.A. LADYZHENSKAYA, The mathematical theory of viscous incompressible flow, transl. by R.A. Silverman and J. Chu, Gordon and Breach Science Publishers, New York, 1969.
[67] A.J. LICHTENBERG AND M.A. LIEBERMAN, Regular and chaotic dynamics,
Springer-Verlag, Inc., New York, 1992.
[68] B. L. LIPPHARDT, Dynamics of dipoles in the Middle Atlantic Bight, CCPO tech. 95-07, Old Dominion University, Norfolk, 1995.
[69] E.N. LORENZ, Deterministic non-periodic flow, J. Atm. Sci. 20 (1963) 130-141.
[70] E.N. LORENZ,, Attractor sets and quasi-geostrophic equilibrium, J. Atm. Sci. 37 (1980) 1685-1699.
[71] J.L. LUMLEY, G. BERKOOZ, AND P. HOLMES, Turbulence, coherent structures, dynamical systems and symmetry, Cambridge University Press, Cambridge, 1996.
[72] J.L. LUMLEY, ed., Turbulence at the crossroads, Springer-Verlag, Inc., New York, 1990.
[73] J. LUTJEHARMS, W. DE RUIJTER, A. BIASTOCH, S. DRIJFHOUT, R. MATANO, T. PICHEVIN, P. VAN
LEEUWEN, AND W. WEIJER, Indian-Atlantic interocean exchange: dynamics, estimation and impact, J. Geophys. Res. 104 C9 (1999) 20885-20910.
[74] J. LUTJEHARMS AND R. VAN BALLEGOOLLEN, The retroflection of the Agulhas current, J. Phys. Oceanogr. 18 (1988) 1570-1583.
[75] D.B. OLSON AND R.H. EVANS, Rings of the Agulhas Current, Deep-Sea Reseach 33(1)(1996) 27-42.
[76] J.M OTTINO, The kinematics of mixing, Cambridge University Press, Cambridge, 1989.
[77] J. PEDLOSKY. Geophysical fluid dynamics, 2nd ed., Springer-Verlag, Inc., New York, 1987.
[78] H.-O. PEITGEN, H. JURGENS, AND D. SAUPE, Chaos and fractals: new frontiers of science, Springer-Verlag, Inc., New York, 1992.
[79] R. PIERREHUMBERT, A family of steady, translating vortex pairs with distributed vorticity,
J. Fluid. Mech. 99 (1980) 129-144.
[80] R. PIERREHUMBERT, Chaotic mixing of tracer and vortcity by modulated travelling Rossby waves, Geophy. Astrophys. Fluid Dynamics 58 (1991) 285-319.
[81] R. PIERREHUMBERT AND P. MALGUZZI, Forced coherent structures and local multiple equilibria in a barotropic atmosphere, J. Atmos. Sci. 41 (1984) 246-257.
[82] [B.D. REDDY AND G.P. GALDI, Well-posedness of the problem of fiber suspension flows, J. Non-Newtonian Fluid Mech., 83 (1999) 205-230.
[83] B.D. REDDY, Introductory functional analysis, Springer-Verlag, Inc., New York, 1998.
[84] M. REED AND B. SIMON, Functional analysis, Academic Press, San Diego, 1980.
[85] H.L. ROYDEN, Real Analysis, Macmillan Publishing Co., New York, 1988.
[86] S. SMALE, Dynamics retrospective, Physica D 51 (1991) 267-273.
[87] S. SMALE, Differentiable dynamical systems, Bull. Amer. Math. 73 (1967) 747-817.
[88] E.A. SPIEGEL AND G. VERONIS, On the Boussinesq approximation for a compressible fluid, Astrophy. J. 131 (1960) 442-447.
[89] S.H. STROGATZ, Nonlinear dynamics and chaos, Addison-Wesley, New York, 1994.
[90] R. TEMAM, Navier-Stokes equations and nonlinear functional analysis, CBMS regional conference, SIAM, Philadelphia, 1983.
[91] R. TEMAM, Infinite-dimensional dynamical systems in mechanics and physics, Springer-Verlag, Inc., New York, 1988.
[92] R. TEMAM, Navier-Stokes equations: Theory and Numerical Analysis, AMS Chelsea Ed., Providence, 2001.
[93] R. TEMAM, B. NICOLAENKO, C. FOIAS AND P. CONSTANTIN, Integral manifolds and inertial manifolds for dissipative partial differential equations, Springer-Verlag, Inc., New York, 1988.
[94] E.S. TITI AND C. CAO, Global well-posedness of the three-dimensional stratified primitive equations with partial vertical mixing turbulence diffusion, Communications in Mathematical Physics, 310 (2012) 537-568.
[95] E.S. TITI AND C. CAO, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Annals of Mathematics, 166 (2007) 245-267.
[96] E.S. TITI, On approximate inertial manifolds to the Navier-Stokes equations, J. Math. Anal. And Appl., 149 (1990) 540-557.
[97] M.J.P.S. TLADI, Well-posedness and long-time dynamics of geophysical fluid flows, Journal of Applied Mathematics and Computation, 2 (8) 2018: 291-331.
[98] M.J.P.S. TLADI, On the qualitative theory of the rotating Boussinesq and quasigeostrophic equations, Quaetiones Mathematicae 40 (6) 2017: 705-737.
[99] M.J.P.S. TLADI, A geometric approach to differential equations, Lecture Notes, Department of Math. And Applied Math., University of Limpopo, 2009.
[100] M.J.P.S. TLADI, Adiabatic chaos and transport in mesoscale eddies and vortex rings, CERECAM tech. 2005-01, University of Cape Town, Rondebosch, 2005.
[101] M.J.P.S. TLADI, Well-posedness and long-time dynamics of -plane ageostrophic flows, Ph.D. Thesis, Department of Math. And Applied Math., University of Cape Town, 2004.
[102] A. TSINOBER AND H.K. MOFFATT, eds., Topological fluid mechanics, Cambridge University Press, Cambridge, 1990.
[103] S. WANG, Attractors for the 3D baroclinic quasigeostrophic equations of large scale atmosphere, J. Math. Anal. And Appl. 165 (1992) 266-283.
[104] S. WANG, J.L. LIONS AND R. TEMAM, New formulations of the primitive equations of the atmosphere and applications, Nonlinearity 5 (1992), 237-288.
[105] S. WANG, J.L. LIONS AND R. TEMAM, On the equations of the large-scale ocean, Nonlinearity 5 (1992), 1007-1053.
[106] S. WIGGINS, Chaotic transport in dynamical systems, Springer-Verlag, Inc., New York, 1992.
[107] S. WIGGINS, Introduction to applied nonlinear dynamical systems and chaos, Springer-Verlag, Inc., New York, 1990.
[108] P.A. WORFOLK AND W. CRAIG, An integrable normal form for water waves in infinite depth, Physica D 84 (1995) 513-531.
[109] P.A. WORFOLK, J. GUCKENHEIMER, M. MYERS, F. WICKLIN AND A. BAK, DsTool: Computer assisted exploration of dynamical systems, Notices Amer. Math. Soc. 39 (1992), 303-309.