magazinelogo

Journal of Applied Mathematics and Computation

ISSN Print: 2576-0645 Downloads: 152865 Total View: 1835387
Frequency: quarterly ISSN Online: 2576-0653 CODEN: JAMCEZ
Email: jamc@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/jamc.2018.09.003

Well-Posedness and Long-Time Dynamics of the Rotating Boussinesq and Quasigeostrophic Equations

Maleafisha Joseph Pekwa Stephen Tladi

Department of Mathematics and Applied Mathematics, University of Limpopo, Private Bag 1106 Polokwane, 0727 South Africa.

*Corresponding author: Maleafisha Joseph Pekwa Stephen Tladi

Published: September 27,2018

Abstract

Most differential equations occurring in multiscale modelling of physical and biological systems cannot be solved analytically. Numerical integrations do not lead to a desired result without qualitative analysis of the behavior of the equation’s solutions. The authors study the quasigeostrophic and rotating Boussinesq equations describing the motion of a viscous incompressible rotating stratified fluid flow, which refers to PDE that are singular problems for which the equation has a parabolic structure (rotating Boussinesq equations) and the singular limit is hyperbolic (quasigeostrophic equations) in the asymptotic limit of small Rossby number. In particular, this approach gives as a corollary a constructive proof of the well-posedness of the problem of quasigeostrophic equations governing modons or Rossby solitons. The rotating Boussinesq equations consist of the Navier-Stokes equations with buoyancy-term and Coriolis-term in beta-plane approximation, the divergence-constraint, and a diffusion-type equation for the density variation. Thus the foundation for the study of the quasigeostrophic and rotating Boussinesq equations is the Navier-Stokes equations modified to accommodate the effects of rotation and stratification. They are considered in a plane layer with periodic boundary conditions in the horizontal directions and stress-free conditions at the bottom and the top of the layer. Additionally, the authors consider this model with Reynolds stress, which adds hyper-diffusivity terms of order 6 to the equations. This course focuses primarily on deriving the quasigeostrophic and rotating Boussinesq equations for geophysical fluid dynamics, showing existence and uniqueness of solutions, and outlining how Lyapunov functions can be used to assess energy stability. The main emphasis of the course is on Faedo-Galerkin approximations, the LaSalle invariance principle, the Wazewski principle and the contraction mapping principle of Banach-Cacciopoli. New understanding of quasigeostrophic turbulence called mesoscale eddies and vortex rings of the Gulf Stream and the Agulhas Current Retroflection could be helpful in creating better ocean and climate models.

References

[1] D.J. ACHESON, Elementary fluid dynamics, Clarendon Press, Oxford, 1990. 

[2] R.A. ADAMS, Sobolev spaces, Academic Press, New York, 1975. 

[3] S. AGMON AND L. NIRENBERG, Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space, Comm. Pure Appl. Math, 20 (1967), 207-229. 

[4] V.I. ARNOLD, Mathematical methods of classical mechanics, Springer-Verlag, Inc., New York, 1989. 

[5] H. BAER AND K. STEPHAN. Heat and mass transfer, transl. by Janepark N., Springer-Verlag, Inc., New York, 1998. 

[6] S.H. BALASURIYA, Barriers and transport in unsteady flows: a Melnikov approach, SIAM, Philadelphia, 2017. 

[7] S.H. BALASURIYA, C.K.R.T. JONES, AND B. SANDSTEDE, Viscous perturbations of vorticity-conserving flows and separatrix splitting, Nonlinearity 11 (1998), 47-77. 

[8] G.K. BATCHELOR. Introduction to fluid dynamics. Cambridge University Press, Cambridge, 1967. 

[9] A.J. BOURGEOIS AND J.T. BEALE, Validity of the quasigeostrophic model for large-scale flow in the atmosphere and ocean, SIAM J. Math. Anal. 25 (4) 1994:1023-1068. 

[10] M.G. BROWN AND R.M. SAMELSON, Particle motion in vorticity-conserving 2-dimensional incompressible flows, Physics of Fluids 6 (1994) 2875-2876. 

[11] C. CANUTO, M.Y. HUSSAINI, A. QUARTERONI, AND T.A. ZANG, Spectral methods in fluid dynamics, 

Springer-Verlag, Inc., New York, 1988. 

[12] A. CONSTANTIN, Nonlinear water waves with applications to wave-current interactions and tsunamis, CBMS regional conference, SIAM, Philadelphia, 2011. 

[13] B. CUSHMAN-ROISIN, Introduction to geophysical fluid dynamics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1994. 

[14] C.M. DAFERMOS, Contraction semigroups and trend to equilibrium in continuum mechanics, Springer-Verlag, Inc., New York, 1976. 

[15] C.M. DAFERMOS, Hyperbolic conservation laws in continuum physics, 3rd ed., Springer-Verlag, Inc., New York, 2010. 

[16] F. DUMORTIER, H. KOKUBU, AND H. OKA, A degenerate singularity generating geometric Lorenz attractors, Ergod. Th. Dynam. Sys. 15 (1995) 833-856. 

[17] G. FLIERL, Isolated eddy models in geophysics, Ann. Rev. Fluid Mech. 19(1987) 493-530. 

[18] G. FLIERL, M. STERN, AND J. WHITEHEAD, The physical significance of modons: laboratory experiments and general physical constraints, Dyn. Atmos. Oceans 7(1983) 233-263. 

[19] G. FLIERL, M.E. STERN, AND A. WHITEHEAD, The physical significance of modons: laboratory experiments and general integral constraints. Dyn. Atmos. Oceans 7 (1983) 263-293.

[20] G. FLIERL, V.D. LARICHEV, J.C. MCWILLIAMS, AND G.M. REZNIK, The dynamics of baroclinic and barotropic solitary eddies, Dyn. Atmos. Oceans 5 (1980) 1-41. 

[21] G. FLIERL, P. MALANOTTE-RIZOLLI, AND N. ZABUSKY N., Nonlinear waves and coherent vortex structures in barotropic -plane jets, J. Phys. Oceanogr. 17 (1987) 1408-1438. 

[22] C. FOIAS, O. MANLEY AND R. TEMAM, Attractors for the Bernard problem: Existence and physical bounds on their fractal dimension, Nonlinear Anal. 11 (1987), 939-967. 

[23] C. FOIAS, G. SELL AND R. TEMAM, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations 73 (1988), 309-353. 

[24] S.J. FRIEDLANDER, Lectures on stability and instability of ideal fluid, Institute of Advanced Studies, Princeton University, Princeton, 1999. 

[25] S.J. FRIEDLANDER, Introduction to the mathematical theory of geophysical fluid dynamics, North Holland, New York, 1980. 

[26] G.P. GALDI, An introduction to the mathematical theory of the Navier-Stokes equations, Springer-Verlag, Inc., New York, 1994. 

[27] G.P. GALDI AND M. PADULA, A new approach to energy theory in the stability of fluid motion, Arch. Rational Mech. Anal. 110 (1990), 187-286. 

[28] G.P. GALDI AND S. RIONERO, Weighted energy methods in fluid dynamics and elasticity, Springer-Verlag, Inc., New York, 1985. 

[29] J. GRUENDLER, Homoclinic solutions and chaos in ordinary differential equations with singular perturbations, Trans. Amer. Math. 350 (9) (1998) 3797-3814. 

[30] J. GRUENDLER, The existence of transverse homoclinic solutions for higher order equations, J. Differential Equations 130 (1996), 307-320. 

[31] J. GUCKENHEIMER AND P. HOLMES, Nonlinear oscillations, dynamical systems and bifurcation of vector fields, Springer-Verlag, Inc., New York, 1983. 

[32] M.E. GURTIN, An introduction to continuum mechanics, Academic Press, Inc., San Diego, 1981. 

[33] J.K. HALE AND H. KOCAK, Dynamics and bifurcations, Springer-Verlag, Inc., New York, 1991. 

[34] J.K. HALE AND S.M. VERDUYN LUNEL, Introduction to functional differential equations, Springer-Verlag, Inc., New York, 1993. 

[35] J.K. HALE AND S.-N. CHOW, Methods of bifurcation theory, Springer-Verlag, Inc., New York, 1982. 

[36] J.K. HALE, Ordinary differential equations, Wiley-Interscience, New York, 1969. 

[37] G. HALLER, Chaos near resonance, Springer-Verlag, Inc., New York, 1999. 

[38] G. HALLER AND A.C. POJE, Finite time transport in aperiodic flows, Physica D 83 (1998) 353-380. 

[39] P. HARTMAN, Ordinary differential equations, SIAM, Philadelphia, 2002. 

[40] S.B. HOOKER, J.J. HOLDZKOM, AND A.D. KIRWAN, A comparison of a hydrodynamic lens model to observations of a warm core ring, J. Geophys. Res. 100 C8}(1995) 15889-15897. 

[41] S.B. HOOKER AND J.W. BROWN, Warm core ring dynamics derived from satellite imagery, 

J. Geophys. Res. 99 (1994) 25181-25194. 

[42] S.B. HOOKER AND D.B. OLSON, Center of mass estimation in closed vortices: A verification in principle and practice, J. Atmos. Oceanic Technol. {\bf 1} (1984) 247-255. 

[43] F. JOHN, Partial differential equations, 4th ed., Springer-Verlag, Inc., New York, 1971. 

[44] C.K.R.T. JONES, Session on dynamical systems: geometric singular perturbation theory, C.I.M.E. Lectures, 1994. 

[45] T.M. JOYCE, J.K.B. BISHOP AND O.B. BROWN, Observations of offshore shelf-water transport induced by a warm-core ring, Deep Sea Res. 39 (1992) 97-113. 

[46] T.M. JOYCE, Velocity and hydrographic structure of a Gulf Stream warm-core ring, J. Phys. Oceanogr. 14 (1984) 936-947. 

[47] T.M. JOYCE, Gulf Stream warm-core ring collection: an introduction, J. Geophys. Res. {\bf 90} (1985) 8801-8802. 

[48] T. KAPER AND G. KOVACIC, A geometric criterion for adiabatic chaos, J. Math. Phys. 35/3 (1994) 1202-1218. 

[49] T. KAPER AND S. WIGGINS, Lobe area in adiabatic Hamiltonian systems, Physica D 51 (1991) 205-212.

[50] T. KATO, Perturbation theory for linear operators, Springer-Verlag, Inc. New York, 1966. 

[51] T. KATO AND G. PONCE, Well-posedness of the Euler and Navier-Stokes equations in Lebesgue spaces, Revista Mathematica Iberoamerican 2 (1986) 73-88. 

[52] R.E. KHAYAT, Chaos and overstability in the thermal convection of viscoelastic fluids, J. Non-Newtonian Fluid Mech. 53 (1994) 227-255. 

[53] A.D. KIRWAN, P.R. MIED, AND B.L. LIPPHARDT, Rotating modons over isolated topography in two-layer ocean, Z. Angwe. Math. Phys. 48 (1997) 535-570. 

[54] A.D, KIRWAN, P.R. MIED, AND G.J. LINDEMANN, Rotating modons over isolated topographic features, J. Phys. Oceanogr. 22 (1992) 1569-1582. 

[55] R.C. KLOOSTERZIEL, G.F. CARNEVALE AND D. PHILIPPE, Propagation of the barotropic dipoles over topography in a rotating tank, Dyn. Atmos. Oceans 19 (1993) 65-100. 

[56] A. MAJDA, Introduction to PDE and waves for the atmosphere and ocean, Courant Institute of Mathematical Sciences, New York University, New York, 2003. 

[57] A. MAJDA, Vorticity and the mathematical theory of incompressible flow, Comm. Pure Appl. Math. 39 (1986) S187-S220. 

[58] A. MAJDA AND S. KLAINERMAN, Singular limits of quasilnear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math. 43 (1981) 481-524. 

[59] D. MARCHESIN, A.V. AZEVEDO, B.J. PLOHR, AND K. ZUMBRUN, Nonuniqueness of solutions of Riemann problems, Z. Angew. Math. Phys. 47 (1996) 977-998. 

[60] A. MATSUMURU AND T. NISHIDA, The initial-boundary value problem for the equations of motion of general fluids, North-Holland Publishing Co., New York 10 (1982). 

[61] J.C MCWILLIAMS, An application of the equivalent modons to atmospheric blocking, 

Dyn. Atmos. Oceans 5}(1980) 43-66. 

[62] P.R. MIED AND G.J. LINDEMANN, The birth and evolution of eastward propagating modons, J. Phys. Oceanogr. 12 (1982) 213-230. 

[63] P. MILLER, A. ROGERSON, C.K.R.T. JONES, AND L. PRATT, Quantifying transport in numerically generated velocity fields, Physica D 110 (1997) 105-122. 

[64] P. MILLER, A. ROGERSON, C.K.R.T. JONES, AND L. PRATT, Lagrangian motion and fluid exchange in a barotropic meandering jet, J. Phys. Oceanogr. 29 (1999) 2635-2655. 

[65] J. MOSER, Stable and random motions in dynamical systems, Princeton University Press, Princeton, 1973. 

[66] O.A. LADYZHENSKAYA, The mathematical theory of viscous incompressible flow, transl. by R.A. Silverman and J. Chu, Gordon and Breach Science Publishers, New York, 1969. 

[67] A.J. LICHTENBERG AND M.A. LIEBERMAN, Regular and chaotic dynamics, 

Springer-Verlag, Inc., New York, 1992. 

[68] B. L. LIPPHARDT, Dynamics of dipoles in the Middle Atlantic Bight, CCPO tech. 95-07, Old Dominion University, Norfolk, 1995. 

[69] E.N. LORENZ, Deterministic non-periodic flow, J. Atm. Sci. 20 (1963) 130-141. 

[70] E.N. LORENZ,, Attractor sets and quasi-geostrophic equilibrium, J. Atm. Sci. 37 (1980) 1685-1699. 

[71] J.L. LUMLEY, G. BERKOOZ, AND P. HOLMES, Turbulence, coherent structures, dynamical systems and symmetry, Cambridge University Press, Cambridge, 1996. 

[72] J.L. LUMLEY, ed., Turbulence at the crossroads, Springer-Verlag, Inc., New York, 1990. 

[73] J. LUTJEHARMS, W. DE RUIJTER, A. BIASTOCH, S. DRIJFHOUT, R. MATANO, T. PICHEVIN, P. VAN 

LEEUWEN, AND W. WEIJER, Indian-Atlantic interocean exchange: dynamics, estimation and impact, J. Geophys. Res. 104 C9 (1999) 20885-20910. 

[74] J. LUTJEHARMS AND R. VAN BALLEGOOLLEN, The retroflection of the Agulhas current, J. Phys. Oceanogr. 18 (1988) 1570-1583. 

[75] D.B. OLSON AND R.H. EVANS, Rings of the Agulhas Current, Deep-Sea Reseach 33(1)(1996) 27-42. 

[76] J.M OTTINO, The kinematics of mixing, Cambridge University Press, Cambridge, 1989.

[77] J. PEDLOSKY. Geophysical fluid dynamics, 2nd ed., Springer-Verlag, Inc., New York, 1987. 

[78] H.-O. PEITGEN, H. JURGENS, AND D. SAUPE, Chaos and fractals: new frontiers of science, Springer-Verlag, Inc., New York, 1992. 

[79] R. PIERREHUMBERT, A family of steady, translating vortex pairs with distributed vorticity, 

J. Fluid. Mech. 99 (1980) 129-144. 

[80] R. PIERREHUMBERT, Chaotic mixing of tracer and vortcity by modulated travelling Rossby waves, Geophy. Astrophys. Fluid Dynamics 58 (1991) 285-319. 

[81] R. PIERREHUMBERT AND P. MALGUZZI, Forced coherent structures and local multiple equilibria in a barotropic atmosphere, J. Atmos. Sci. 41 (1984) 246-257. 

[82] [B.D. REDDY AND G.P. GALDI, Well-posedness of the problem of fiber suspension flows, J. Non-Newtonian Fluid Mech., 83 (1999) 205-230. 

[83] B.D. REDDY, Introductory functional analysis, Springer-Verlag, Inc., New York, 1998. 

[84] M. REED AND B. SIMON, Functional analysis, Academic Press, San Diego, 1980. 

[85] H.L. ROYDEN, Real Analysis, Macmillan Publishing Co., New York, 1988. 

[86] S. SMALE, Dynamics retrospective, Physica D 51 (1991) 267-273. 

[87] S. SMALE, Differentiable dynamical systems, Bull. Amer. Math. 73 (1967) 747-817. 

[88] E.A. SPIEGEL AND G. VERONIS, On the Boussinesq approximation for a compressible fluid, Astrophy. J. 131 (1960) 442-447. 

[89] S.H. STROGATZ, Nonlinear dynamics and chaos, Addison-Wesley, New York, 1994. 

[90] R. TEMAM, Navier-Stokes equations and nonlinear functional analysis, CBMS regional conference, SIAM, Philadelphia, 1983. 

[91] R. TEMAM, Infinite-dimensional dynamical systems in mechanics and physics, Springer-Verlag, Inc., New York, 1988. 

[92] R. TEMAM, Navier-Stokes equations: Theory and Numerical Analysis, AMS Chelsea Ed., Providence, 2001. 

[93] R. TEMAM, B. NICOLAENKO, C. FOIAS AND P. CONSTANTIN, Integral manifolds and inertial manifolds for dissipative partial differential equations, Springer-Verlag, Inc., New York, 1988. 

[94] E.S. TITI AND C. CAO, Global well-posedness of the three-dimensional stratified primitive equations with partial vertical mixing turbulence diffusion, Communications in Mathematical Physics, 310 (2012) 537-568. 

[95] E.S. TITI AND C. CAO, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Annals of Mathematics, 166 (2007) 245-267. 

[96] E.S. TITI, On approximate inertial manifolds to the Navier-Stokes equations, J. Math. Anal. And Appl., 149 (1990) 540-557. 

[97] M.J.P.S. TLADI, Well-posedness and long-time dynamics of geophysical fluid flows, Journal of Applied Mathematics and Computation, 2 (8) 2018: 291-331. 

[98] M.J.P.S. TLADI, On the qualitative theory of the rotating Boussinesq and quasigeostrophic equations, Quaetiones Mathematicae 40 (6) 2017: 705-737. 

[99] M.J.P.S. TLADI, A geometric approach to differential equations, Lecture Notes, Department of Math. And Applied Math., University of Limpopo, 2009. 

[100] M.J.P.S. TLADI, Adiabatic chaos and transport in mesoscale eddies and vortex rings, CERECAM tech. 2005-01, University of Cape Town, Rondebosch, 2005. 

[101] M.J.P.S. TLADI, Well-posedness and long-time dynamics of -plane ageostrophic flows, Ph.D. Thesis, Department of Math. And Applied Math., University of Cape Town, 2004. 

[102] A. TSINOBER AND H.K. MOFFATT, eds., Topological fluid mechanics, Cambridge University Press, Cambridge, 1990. 

[103] S. WANG, Attractors for the 3D baroclinic quasigeostrophic equations of large scale atmosphere, J. Math. Anal. And Appl. 165 (1992) 266-283. 

[104] S. WANG, J.L. LIONS AND R. TEMAM, New formulations of the primitive equations of the atmosphere and applications, Nonlinearity 5 (1992), 237-288. 

[105] S. WANG, J.L. LIONS AND R. TEMAM, On the equations of the large-scale ocean, Nonlinearity 5 (1992), 1007-1053.

[106] S. WIGGINS, Chaotic transport in dynamical systems, Springer-Verlag, Inc., New York, 1992. 

[107] S. WIGGINS, Introduction to applied nonlinear dynamical systems and chaos, Springer-Verlag, Inc., New York, 1990. 

[108] P.A. WORFOLK AND W. CRAIG, An integrable normal form for water waves in infinite depth, Physica D 84 (1995) 513-531. 

[109] P.A. WORFOLK, J. GUCKENHEIMER, M. MYERS, F. WICKLIN AND A. BAK, DsTool: Computer assisted exploration of dynamical systems, Notices Amer. Math. Soc. 39 (1992), 303-309.

How to cite this paper

Well-Posedness and Long-Time Dynamics of the Rotating Boussinesq and Quasigeostrophic Equations

How to cite this paper: Maleafisha Joseph Pekwa Stephen Tladi. (2018) Well-Posedness and Long-Time Dynamics of the Rotating Boussinesq and Quasigeostrophic EquationsJournal of Applied Mathematics and Computation2(9), 379-456.

DOI: http://doi.org/10.26855/jamc.2018.09.003