References
[1] Jones, R. E., Foster, D. S. & Longaker, M. T. Management of Chronic Wounds-2018. Jama 320, 1481-1482, doi:10.1001/jama.2018.12426 (2018).
[2] Morton, L. M. & Phillips, T. J. Wound healing and treating wounds: Differential diagnosis and evaluation of chronic wounds. Journal of the American Academy of Dermatology 74, 589-605; quiz 605-586, doi:10.1016/j.jaad.2015.08.068 (2016).
[3] Powers, J. G., Higham, C., Broussard, K. & Phillips, T. J. Wound healing and treating wounds: Chronic wound care and management. Journal of the American Academy of Dermatology 74, 607-625; quiz 625-606, doi:10.1016/j.jaad.2015.08.070 (2016).
[4] Wilkinson, H. N. & Hardman, M. J. Wound healing: cellular mechanisms and pathological outcomes. Open biology 10, 200223, doi:10.1098/rsob.200223 (2020).
[5] Zhao, R., Liang, H., Clarke, E., Jackson, C. & Xue, M. Inflammation in Chronic Wounds. International journal of molecular sciences 17, doi:10.3390/ijms17122085 (2016).
[6] Durand, B. et al. Bacterial Interactions in the Context of Chronic Wound Biofilm: A Review. Microorganisms 10, doi:10.3390/microorganisms10081500 (2022).
[7] Holmes, C. J., Plichta, J. K., Gamelli, R. L. & Radek, K. A. Dynamic Role of Host Stress Responses in Modulating the Cutaneous Microbiome: Implications for Wound Healing and Infection. Advances in wound care 4, 24-37, doi:10.1089/wound.2014.0546 (2015).
[8] Ibberson, C. B. & Whiteley, M. The social life of microbes in chronic infection. Current opinion in microbiology 53, 44-50, doi:10.1016/j.mib.2020.02.003 (2020).
[9] Kadam, S. et al. Bioengineered Platforms for Chronic Wound Infection Studies: How Can We Make Them More Human-Relevant? Frontiers in bioengineering and biotechnology 7, 418, doi:10.3389/fbioe.2019.00418 (2019).
[10] Kalan, L. & Grice, E. A. Fungi in the Wound Microbiome. Advances in wound care 7, 247-255, doi:10.1089/wound.2017.0756 (2018).
[11] Kigerl, K. A., Zane, K., Adams, K., Sullivan, M. B. & Popovich, P. G. The spinal cord-gut-immune axis as a master regulator of health and neurological function after spinal cord injury. Experimental neurology 323, 113085, doi:10.1016/j.expneurol.2019.113085 (2020).
[12] Mechelli, R. et al. MAIT Cells and Microbiota in Multiple Sclerosis and Other Autoimmune Diseases. Microorganisms 9, doi:10.3390/microorganisms9061132 (2021).
[13] Misic, A. M., Gardner, S. E. & Grice, E. A. The Wound Microbiome: Modern Approaches to Examining the Role of Microorganisms in Impaired Chronic Wound Healing. Advances in wound care 3, 502-510, doi:10.1089/wound.2012.0397 (2014).
[14] Rodríguez-Rodríguez, N. et al. Wound Chronicity, Impaired Immunity and Infection in Diabetic Patients. MEDICC review 24, 44-58, doi:10.37757/mr2021.V23.N3.8 (2022).
[15] Sundman, M. H., Chen, N. K., Subbian, V. & Chou, Y. H. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain, behavior, and immunity 66, 31-44, doi:10.1016/j.bbi.2017.05.009 (2017).
[16] Vlastarakos, P. V., Nikolopoulos, T. P., Maragoudakis, P., Tzagaroulakis, A. & Ferekidis, E. Biofilms in ear, nose, and throat infections: how important are they? The Laryngoscope 117, 668-673, doi:10.1097/MLG.0b013e318030e422 (2007).
[17] Wang, J. et al. The Role of Neutrophil Extracellular Traps in Periodontitis. Frontiers in cellular and infection microbiology 11, 639144, doi:10.3389/fcimb.2021.639144 (2021).
[18] Wang, Y., Yan, M., Or, P. M. & Chan, A. M. The genetic landscapes of inflammation-driven gastrointestinal tract cancers. Current pharmaceutical design 21, 2924-2941, doi:10.2174/1381612821666150514103332 (2015).
[19] Bottery, M. J. Ecological dynamics of plasmid transfer and persistence in microbial communities. Current opinion in microbiology 68, 102152, doi:10.1016/j.mib.2022.102152 (2022).
[20] Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nature reviews. Microbiology 16, 143-155, doi:10.1038/nrmicro.2017.157 (2018).
[21] Chen, Y. E., Fischbach, M. A. & Belkaid, Y. Skin microbiota-host interactions. Nature 553, 427-436, doi:10.1038/nature25177 (2018).
[22] Centurion, F. et al. Nanoencapsulation for Probiotic Delivery. ACS nano 15, 18653-18660, doi:10.1021/acsnano.1c09951 (2021).
[23] Chevallereau, A., Pons, B. J., van Houte, S. & Westra, E. R. Interactions between bacterial and phage communities in natural environments. Nature reviews. Microbiology 20, 49-62, doi:10.1038/s41579-021-00602-y (2022).
[24] Flowers, L. & Grice, E. A. The Skin Microbiota: Balancing Risk and Reward. Cell host & microbe 28, 190-200, doi:10.1016/j.chom.2020.06.017 (2020).
[25] Grosskopf, T. & Soyer, O. S. Synthetic microbial communities. Current opinion in microbiology 18, 72-77, doi:10.1016/j.mib.2014.02.002 (2014).
[26] Knight, R. et al. Best practices for analysing microbiomes. Nature reviews. Microbiology 16, 410-422, doi:10.1038/s41579-018-0029-9 (2018).
[27] Ronda, C. & Wang, H. H. Engineering temporal dynamics in microbial communities. Current opinion in microbiology 65, 47-55, doi:10.1016/j.mib.2021.10.009 (2022).