Md Joshem Uddin1,3,*, Md. Shakil Hossain2, Md. Arif Hossain1, Sharana Parvin1, Adiba Rahman1, Md. Mehedi Hasan Sohel1
1Department of Applied Mathematics, University of Dhaka, Dhaka-1000, Bangladesh.
2Department of Mathematics, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh.
3Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA.
*Corresponding author: Md Joshem Uddin
References
[1] Merton, R.C. (1973). Theory of rational option pricing. The Bell Journal of economics and management science, 4:141-183. https://doi.org/10.2307/3003143.
[2] Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of political economy, 81: 637-654. https://doi.org/10.1086/260062.
[3] Brennan, M.J. and Schwartz, E.S. (1978). Finite Difference Methods and Jump Processes Arising in the Pricing of Contingent Claims: A Synthesis. The Journal of Financial and Quantitative Analysis, 13:461-474. https://doi.org/10.2307/2330152.
[4] Phelim, P.B. (1977). Options: A Monte Carlo approach. Journal of Financial Economics, 4:323-338.
https://doi.org/10.1016/0304-405X(77)90005-8.
[5] Jeong, D., Yoo, M., Yoo, C., and Kim, J. (2019). A Hybrid Monte Carlo and Finite Difference Method for Option Pricing. Computational Economics, 53:111-124. https://doi.org/10.1007/s10614-017-9730-4.
[6] Gülen, S. (2021). A Numerical Discussion for the European Put Option Model. Erzincan University Journal of Science and Technology, 14:132-140. https://doi.org/10.18185/erzifbed.758426.
[7] Fadugba, S., Nwozo, C., and Babalola, T. (2012). The comparative study of finite difference method and Monte Carlo method for pricing European option. Mathematical Theory and Modeling, 2: 60-67.
[8] Jabbour, G.M. and Liu, Y.K. (2005). Option pricing and Monte Carlo simulations. Journal of Business & Economics Research (JBER), 3.https://doi.org/10.19030/jber.v3i9.2802.
[9] Hor, R.X., Ng, W.S., Tan, W.K. and Cheong, H.T. (2019). Valuation of American option with discrete dividend payments. AIP Conference Proceedings, 2184. https://doi.org/10.1063/1.5136413.
[10] Hull, J.C. (2003). Options futures and other derivatives. Pearson/Prentice Hall, New York, NY.
[11] Chawla, M.M. and Evans, D.J. (2004). Numerical volatility in option valuation from Black–Scholes equation by finite differences. International Journal of Computer Mathematics, 81:1039-1041. https://doi.org/10.1080/03057920412331272234.
[12] Ankudinova, J. and Ehrhardt, M. (2008). On the numerical solution of nonlinear Black–Scholes equations. Computers & Ma-thematics with Applications, 56:799-812. https://doi.org/10.1016/j.camwa.2008.02.005.
[13] Tavella, D. and Randall, C. (2000). Pricing financial instruments: The finite difference method. John Wiley & Sons, Vol. 13.
[14] Zhu, Y., Wu, X., Chern, I.L., and Sun, Z.Z. (2004). Derivative securities and difference methods. New York: Springer, 376-377. https://doi.org/10.1007/978-1-4614-7306-0.
[15] Fu, M.C. and Hu, J.Q. (1995). Sensitivity analysis for Monte Carlo simulation of option pricing. Probability in the Engineering and Informational Sciences, Cambridge University Press, 9:417-446. https://doi.org/10.1017/S0269964800003958.
[16] Bendob, A. and Bentouir, N. (2019). Options pricing by Monte Carlo Simulation, Binomial Tree and BMS Model: A comparative study of Nifty50 options index. Journal of Banking and Financial Economics, 1:79-95.
https://doi.org/10.7172/2353-6845.jbfe.2019.1.4.
[17] Hoffman, K.A. and Chiang, S.T. (2000). Computational fluid dynamics. Engineering Education System, 2.